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PREFACE

During the decade of the 1960s a new industry, satellite communications, was
born as one of the products of the space program conducted by the United States of
America. As of mid-1971, this new industry has evolved to the point where it serves
a major portion of the world's population. The most dramatic illustration of this
service is real-time television coverage of major international events, allowing
millions to literally be "on-the-spot" to view such activities as the Olympic games

and official state visits of world political and religious leaders.

Numerous programs have contributed toward the evolution of satellite communi-
cations over the past 10 years and much has been written about them, The primary
objectives of this compendium are to summarize the major contributions of each
program and to compile an extensive bibliography of the publicly available writings
on them, The compendium has been assembled under the sponsorship of the Goddard

Space Flight Center of the National Aeronautics and Space Administration.

iii
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SECTION 1 - INTRODUCTION

1.1 SCOPE AND ORGANIZATION

This document presents a comprehensive review of worldwide satellite communi-
cation programs that range in time from the inception of satellite communications to
mid-1971. Particular emphasis is placed on program results, including experiments
conducted, communications system operational performance, and technology employed,
The background for understanding these results is established through brief summaries
of the program organization, system configuration, and satellite and ground terminal
characteristics. Major consideration is given to the communications system aspects
of each program, but general spacecraft technology and other experiments conducted
as part of the same prograrh are, for the most part, at least mentioned summarily.
Each program review attempts to be thoroﬁgh and objective to the maximum extent
possible from publicly available literature, In some cases, such literature was
not adequate to allow complete reporting to the level of descriptive detail desired,

This is particularly true for programs involving foreign, international, or military
sponsorship. Program difficulties encountered are viewed as positive contributions
towards advancing the state-of-the-art in satellite communications and are presented

in that light,

The project reviews presented include all significant past programs in which
satellites having some operational capability were successfully launched into orbit and
all active programs, as of mid-1971, wherein development and procurement of the
necessary space hardware had been approved, Some of the programs described span
a considerable period of time and an evolutionary development of several configura-
tions of ground and space assets. In most such cases, separate discussions of the
different segments of the program, each segment of which may encompass several
spacecraft, are provided. The approach to program segmentation has, in all cases,
been guided by the results-oriented objective of this document. The organizational

grouping this provides may not in all cases coincide exactly with the chronological



sequence of events or the officlal program organization based on administrative con-

siderations and initially expected results,

The document is organized and formatted to provide the user with easy access to
needed information, It features a chronological ordering of program descriptions,
brief concise summaries of each program, including extensive use of tabular presen-
tations, adherence to a consistent format from description to description, and exten-
sive bibliographies of cited and related references from which the reader can do more
detailed research on a particular aspect of a program. The consistent format provides
consideration of the same items of information in the same order on each program and
extends this philosophy from the defining and ordering of major subtopics to the de-
fining and ordering of the tables employed. The bibliographies are incorporated
directly following the particular program to which they are pertinent and are composed,

in general, of references readily avallable within the public domain.

The bhasic format for each description encompasses the following major sub-
topics: (1) Program Description, (2) System Description, (3) Spacecraft, (4) Ground
Terminals, (5) Experiments, and (6) Operational Results. In a few instances, the
nature and extent of availahle information dictated that the "Program' and "System
Description' subtopics be replaced b:} a "General Description” or "Introduction”
subtopic, In such cases, informatibn of the type normally includéd in the first two
subtopics is distributed over the introductory, spacecraft, and ground terminal sub-
topics.

Information, typically, included within each major subtopic is as follows:

® Program Description - Project origin and objectives; spacecraft launch
dates, orbital data, and status; extent to which program objectives were
accomplished; participating ground terminals; sponsoring organizations;
and significant results advancing the state-of-the-art in satellite communi-'

cations.



1.2

System Description - Ground terminal linking, extent of spacecraft visi-
bilities, operating frequencies, signal processing including modulation and

multiple access, system control, and calculated link performance,

Spacecraft - Major characteristics of antennas and communications re-
peaters; general satellite features including stabilization, prime power,
size and weight; and communications repeater block diagram. Major on-
board exper-iments not directly communications-related are listed but not

described in detail,

Ground Terminals - Major characteristics of antennas, receive system,
transmitter, tracking system and physical installation; block diagram of

principal subsystems; and any unique aspects,

Experiments - Definition of major types of experiments, summary of pri-
mary experimental results, and descriptions of significant demonstrations

and publie relatfons highlights,

Operational Results - Summary of operational traffic handled, plus opera-
tional performance and reliability of the satellites and ground terminals,

OVERVIEW OF PROGRAMS

Major events, in each of the programs reviewed in this doccument, are summa-

rized as a function of time in Figure 1-1. The programs illustrated encompass all

significant satellite communication activities involving orbiting hardware since the

launching of the Score satellite, with the possible exception of Project Oscar,

Several active repeater satellites, nicknamed "Oscar," have been launched, starting

as far back as late 1961 by the U, S, Air Force, to provide amateur radio communi-

cations satellites for use by ""Ham radio" operators throughout the world. Some of

these satellites were very short-lived and they, by intent, did not push the state-of-

the-art in satellite communications,
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Figure 1-1. Historical Summary of Program Activities
as of Mid-1971




The figure dramatically displays the very short duration of the Score and Couarier
programs conducted during the early history of satellite communications, These pro-
grams represented the initial attempts to employ active satellites for communications,
During this early era, the Echo and West Ford programs also displayed the long life
times attainable through employing passive satellites to establish a communications
system. However, the Telstar, Relay, and Syncom programs soon proved that highly
reliable active satellites were feasible and, in view of the higher system capacities
provided, all subsequent programs have followed their lead. Some modest interest in
passive satellite technology has been retained by the National Aeronautics and Space
Administration (NASA) but no technology developments or future satellite launchings

are presently planned.

The technology demonstrated in the Telstar, Relay and Syncom programs led,
in a relatively short time, to the development of operational systems. Subsequent
programs providing these systems have included Intelsat, Initial Defense Cormmuni-
cations Satellite Program (IDCSP), Skynet, and the North Atlantic Treaty Organization
(NATO) program, Additionally, the Defense Satellite Communications System (DSCS)
Phase II and Telesat programs have satellite procurements underway that should Iead
to operational systems by mid-1972 and early 1973, respectively. Satellite experi-
mentation has been continued by the Lincoln Experimental Satellite (LES), Applications
Technology Satellite (ATS), and Tacsatcom programs.

A more detailed summary of the programs reviewed in this document is provided
in Table 1-1. The table includes an indication of individual program sponsorship and
mission. These have been powerful factors dictating the lines along which programs
evolved. Accordingly, the programs can be grouped into U, 8. military, purely
scientific, international commercial, foreign military, and domestic commercial

cafcgories.

The U.S. military programs have involved a considerable amount of scientific
investigation of their own but it has, for the most part, been channeled towards the

specific goals of developing strategic and tactical military communications systems.

1-5



Table 1-1. Summary of Program Scope and Status
as of Mid-1971

Batellites . . tet.

Fropram Launched Sponsnr Misgion Stetus N
Beore " T Experimentaticn Communicaticns failed due to battery failure alter
oo gg; E;f;trt‘;ﬁ.dswr' pon/army v 17 daye in orpit. Oroit decayed vfter 35 days,

e 5 3 3 xperim tion Myo satelliteas successiully employed. Experlments

Wehioy Three passlve NASA Exp entati T s iy sariy 1065, Brbic ai: lagt natelllte
decayed in 1969.

. R . E: mentation One satell1te sucessfully supplied communicsticns

fourter Eﬁs ?g:i::ﬂstorﬂ pon/Arny npert for 1Y days. Command !eceivgg failure caused
gatelliite te bacome inactive.

Went Mard Two dispensetrs DDA Force wxperimentaticn One digpunsar successfully dispersed dipoles in

of dipole needles paasive rerlecting belt. Major experiments com-
pleted in first year in orbit. FRatimated that arbit
of lagt dipoles decayed by eerly 1066,

Pelstar 'wa active ATET Fxperimentation Roth aatellites suocessfully enmployed. Last
satcllite surned off in 1967. Eyperimentatlon
espentlally completad by early 1965.

n 9 ARITe] HASA Experimentation Both satellites successfully empleoyed. Last

feday fwe active F astellite failed in 1067. Experimentation essentially
completed by carly 1965.

Syneon Thrae ective NASA Experimentation Two satellites attained synchronousa orbit and success-
fully supplied communications. Both satellites still
sctive with no statlonkeeping cepablility. Bxperimen-
tation completed by early 1965. Extenaivaly used for
DOD operaticnal trarfic from 1965 through 1962. HNe
longer employed.

TG Three active DoD/Adr Force Experimentation 'wa X-Bend satellites succesafully empleyed. TLaat

operating at X-Band : satellite became unusable when its orbit dercayed In

& three active 1968, X-lland experiments were coniplated by eorly

operating at UHF 1367. A1l three UHF satellites successfully smploved.

a1l in 5 launches Last setellite remeins uaeble. UHF experiments were
easentlally complete by early 1970. Flans exlst for
two edditicnal spacecraft tc be launched by late 1&7H.

Tnhelsaf one Intelset I, Intelsst Commercial one Intelest I successafully employed. 3stellite

four Intelsat IIs, International retired from service in early 18969, resctivated In
elght Intelsst IIls, Communications mid 1969, and finally retired in late 1969, Thrae
& one Tntelsat IV. Inteleat IIs successfully empleoyed., All three retsin
N 411 active operating some cperationel capability end heve been ploced in
st C-Pand. regerve, Flve Intelsat IITe successfully employed.
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over Indian Qcesn, one 1s pperaticnsl over Paelrie
Ocean, and twn are gpsretional over the Atlontic
Ocean. One Intelsat IV has been succesafully
placed inte epesration over the Atlantlc Ocesn., Flan:
exist for additionnl Intelss$ IVe and an Intelsat ¥
" series of satellites.
Molniys Elghteen active Soviet Civilian and Drhite ol five sateliltes have decayed. Tsact stotus
fovernment military communi- of remalning spacecraft uncertain but st least four
catlons internal are theught to be activs. Flsna exlat far s pacond
to USSR aeriea of Molniya epacecrert (Molnlys II) operating
at C-Band but empleying the same highly elliptical
orbit za ¥Molniya I. Plans alsr exist for 7-fangd
opacecraft to he deployed into geostatlonary orbita.
Ionst (?SCS Thirty-Tour DOD/DCA Bxperimentation Twenty-oix IDCSP satellites surcessfully employed.
Phage T IDCSP, One GGTS 1, and atrategle Twenty-one remain usable, EBExperimentsticn for most
One T0DGE, & ahe military part terminated six months after first launch of 7 and
DATE 1 all inbH commiinlcat lons IDCSP satellltes and system declered operational
launches for U.S. Automatic satellite turn-cffs to start 1n 1972 and
be completed by mid 1974, GGTS 1and DODGE were em-
ployed for a time to evaluate gravity gradlent
ptebilization, DATS 1 provided data gn electronlcally
despun phased array antennas
ATS Two Bpin HASA Techniceal & User Two spln ctabilized satellifes successfully employed.
atabllzed, and Experimentatlion Poth remain usshle. Communicationa experiments
three gravity eagentislly completec by early 1959, One zatellits
gradiant designed for gravity gredlent stabllizetion success-
gtabilized fully employed. It rcmeing usable, Most sxperiments
that appear llkely to be conducted complated by carly
1971. Development of twe satellites providing 30-faot
parabolic antennas underwsy. Launches expeeted in
1973 and 1675
Tacset Ono antive DoOD/Air Ioree Preoperatlonnl One aatellite suceesasfally employed. Tt remsing
Experimeptation mctive with periods ol 1®coning and degraded EIRP,
Msjor sxperiments essentially completed by csrly 1871,
Flans exist for follow-on military tactical system,
Skynet Two netiee Hritdsh Militery One se&tcllite successitlly employed and remeins sctiva,
Goveyrnment Comminiostions Second serles of aatellites [Skynet TT) heing procurrd
for UK. and first launching expected 1n late 1872,
HATO Two arctive KATO Milltary Twe 3stelliten succesafully employed to form NATO
Communt cations Phase TT syotem ond both remeir active, Plans exlal
Yar RATO far a Phase IIT syatem,
D368 Phaae TT None DOD/TICA Stpatepgic military  Six satellites boing procured. PPlrat lsunch of two
comminications tor satellltes plenncd for late 1971,
0,5,
" lenat None Gonadlan Commercial Thres satellites Being procured. Flrst to bte lsunoned

Gavernment

Domeatlc communi-
icatlions !or Canada

in last guarter of 1972, Second to be lsunrhed shoul
four monthe later a3 in-orbit speve.



The evolution of the strategic systems began with the Score and Courier, experimen-
tal store-and-forward satellites. It was continued almost 6 years later with the first
IDCSP launching. In the interim period, the military attempted to develop three axis-
stabilized satellites for launch into synchronous orbits (i.e., Project Advent), developed
the system concepts, and designed the space segment for a medium altitude random
polar orbit system, and extensively considered the possibility of employing Intelsat
for service. Project Advent was terminated in 1962 when the launch vehicle and
stabilization technology required proved to be beyond the state-of-the-art at that time.
The medium altitude development was suspended when the potential economies of
Intelsat service emerged. The latter was dropped for a number of reasons with the
principal factor being the military requirement for a high degree of independent sys-
tem control. The IDCSP concept effected some of the desired system economies by
injecting a reduced number of the previously designed medium altitude satellites into
random near synchronous orbits, using independently programmed and funded Titan
IIIC developmental launches. Between the termination of Project Advent and the first
IDCSP launching, the military gained operational satellite communications experience
by supplying the ground complex and conducting the communication experiments on
NASA's Project Syncom. Operational strategic military systems will be advanced a
step further when the first two DSCS Phase II satellites are launched in late 1971.

Developing tactical systems did not become a formally announced goal of the
U.S. military until 1965 when the Tacsatcom program was established. The experi-
mental UHF satellites of the LES program and the Tacsat satellite followed in direct
response to that goal. However, some of the major system concepts, and in particu-
lar the modulation concepts evaluated in these experiments, began to evolve in the
West Ford program and the SHF portion of the LES program, The latter two evalua-
tions also contributed data of general scientific interest and information applicable to
the development of strategic military systems but in a larger sense they represented |

the beginning of tactical military system experimentation,



NASA has been responsible for the purely scientific programs conducted to date.
These programs have investigated technology applicable in all types of satellite
communications systems. NASA became active in satellite communications at a very
early date through the Echo passive satellite program, As the general interest in
active satellites intensified in the early 1960s, the Relay and Syncom programs came
into being to investigate these types of satellites in medium and synchronous altitude
orbits, respectively, - Towards the mid-1960s the questions on the type of satellite and
orbit to employ had been resolved and approaches to realizing high gain satellite
antennas, spacecraft stabilization, and multiple access became the vital issues. An
Advanced Syncom program was initially conceived by NASA to study these problems,
~ However, this soon evolved into the ATS program, which added a multitude of other

space experiments to those designed to advance communications technology.

The programs oriented toward realizing a system capable of supporting inter-
national commercial communications include Telstar and Intelsat. Telstar was an
experimental program that contributed to general scientific knowledge, However, it
was initiated by the American Telephone and Telegraph (AT&T) Company primarily to
demonstrate the feasibility of employing active satellites for commercial communi-
cations. Before the program was completed, AT&T was legislated out of international
commercial satellite ownership by the Communications Satellite Act of 1962, creating
the Communications Satellite Corporation (Comsat)., This was followed in 1964 by
international interim agreements establishing Intelsat and including Comsat as the
U.S8. representative in this consortium of international partners. The Intelsat program

was initiated immediately based on technology developed in NASA's Project Syncom,

Foreign programs producing systems whose primary objective has been military
communications include Molniya, Skynet, and NATO, The experiméntal beginnings
upon which the Russian Molniya program was based are not publicly known, These
spacecraft began to be placed in orbit in the mid-1960s and an operational system was
soon established to provide military and some civilian communications. This system

has been maintained since that time through replacement launches of similar, if not
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identical, spacecraft. The Skynet and NATO programs evolved in the late 1960s and
early 1970s from technology developed in the U.S. military's IDCSP program. Skynet
provides military communications for the United Kingdom (U.K,) and NATO does the

same for the NATO countries.

Systems designed strictly to provide internal domestic communications for a
particular country are still in their infancy. The first such system is expected to be

provided by Canada's Telesat program by early 1973,

Looking into the future, a number of potential new programs and continuations
of old programs can be discerned which are not extensively reviewed in this document,
Plans exist for two additional LES experimental satellites, and it is expected that a
follow-on U.S. military tactical satellite program will evolve soon. The LES experi-
ments are still classified and the exact nature and extent of the tactical program have
yet to be defined. A Cooperative Applications Satellite (CAS-C), also known as a
Communications Technology Satellite (CTS), sponsored jointly by Canada's Department
of Communications (DOC) and NASA, should soon start to attract public attention.
CAS-C will be jointly developed by Canada and NASA and integrated in Canada. Space-
craft launch is expected by early 1975. The U.S. and Canada will conduct experiments
on a time-shared basis. Intelsat has plans for an Intelsat V series of spacecraft to
advance their international commercial system into its fifth generation of hardware.
The technology upon which these satellites will be based may be developed by a proto-
type or experimental satellite flown before the operational satellites are launched in
the late 1970s, Some competition for future Intelsat systems is likely to emerge in
the form of a Soviet Stationar program. The U.S.5.R. has been granted allocations
by the International Telecommunications Union (ITU) for a geostationary satellite
system operating at C-Band., In the area of foreign military programs, the U.8.8.R,
plans a Molnij-ra II series of spacecraft; the U. K. is developing Skynet II satellites;
and NATO is designing a Phase III system to replace the existing Phase II system.
Molniya II will employ the same highly elliptical orbit as Molniya I but operate at
C-Band., Skynet O will be similar in design to Skynet I but will have considerably



higher EIRP. NATO Phase III is still in the early planning stages. Two new domestic
commercial satellite systems should also begin to emerge soon. Development of a

U.S. System will proceed as soon as the Federal Communications Commission (FCC)
approves one or more of the numerous filings it has received. Additionally, experi-
mental Franco-German Symphonie and Italian Sirio programs are underway that will
provide much of the basis for the intra-European system being developed by the European
Space Research Organization (ESRO). Launches of experimental Symphonie and Sirio
spacecraft should occur by late 1973 or early 1974, Finally, a completely new use for
satellite communications technology has recently become apparent. This is in the

area of air and marine traffic management,
1,3 EVOLUTION OF TECHNOLOGY

The low altitude Score satellite employed simple off -the-shelf VHF hardware to
dramatize the potential of satellite communications by broadcasting a prerecorded
Christmas message from President Eisenhower in 1958, From this beginning, the

interest in satellite communications began to mount in the early 1960s,

Major initial areas of concern centered upon the type of satellite to select,
type of orbit to employ, frequencies to utilize, and the development of ground terminal
technology compatible with satellite communications. The basic satellite question was
whether active or passive satellites should be employed. Either store and forward or
real time active satellite repeaters were feasible, Passive reflector systems could
be composed of a relatively small number of large single point reflecting structures
or belts of multiple dispersed reflective elements. To resoclve the orbit selection
issue, low, medium and synchronous altitudes had to be considered, as did orbit in-
clination and degree of ellipticity. Frequencies appropriate for consideration were
determined to be in the band from 1 to 10 GHz. Ground terminal technology of parti-
cular interest included low noise receive systems, demodulator thresholds allowing
detection down to low values of signal-to-noise ratio, accurate satellite tracking so

that high gain antennas could be employed, and high reliability operational performance,
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Outside of these areas the programs of the early 1960s, including Echo, Courier,
West Ford, Telstar, and Relay, employed similar technology that was well within the
state-of -the-art at that time. Briefly, the active satellites provided almost omni-
directional antennas with essentially zero gain, low transmitter output power, no
stabilization or spin stabilization relative to the sun, and solar cell arrays encircling
the outside of the spacecraft to generate prime power., The ground terminais supplied
large parabolic reflector or horn antennas, high power klystron or TWT transmitters,
and fixed installations. Modulation was conventional analog frequency modulation and
multiple access was by frequency division when employed. The active satellites were,
in general, expected to support no more than two simultaneous accesses. Communi~
cation services handled included analog voice, TTY, low resolution facsimile, and

television.

By late 1963, with the aid of data from these initial programs, the questions of
type satellite, frequency band, and ground terminal technology had been resolved.
Relay and Telstar had proven that reliable active real time repeaters were feasible and
they had become the preferred choice. These repeaters were of the double conversion
type with either hard limiting or AGC to ensure a constant input to the output power
amplifier operating near saturation. Active repeaters were preferred over the passive
systems of Echo or West Ford due to the higher system communication capacities
afforded. Real time repeaters were the choice over the Store and forward system of
Courier because they resulted in simpler more reliable repeaters, and launch vehicle
technology had progressed to the point that reasonably sized satellites could be in-
jected into orbits high enough to provide wide areas and relatively lengthy periods of

mutual ground terminal visibility.

Satellite communication frequencies had been reserved at 4 and 6 GHz for
commercial operations and at 7 and 8 GHz for government operations, The former
were the frequencies demonstrated in the Telstar program while the latter were

employed on West Ford.

1-11



Basic ground terminal technology had been developed on the Echo program in-
cluding: Cooled maser and uncooled parametric amplifier low noise receive systems;
FM feedback demodulators for threshold extension; and accurate tracking using pro-
grammed inputs, manual steering from optical setftings or radar autotracking. This
technology was upgraded on Project Telstar to display reliabilities compatible with
commercial operations and precision autotracking of beacon or communications signals
radiated from active satellites. By late 1963, cooled parametric amplifier low noise

receive systems had also begun to appear in Projects Telstar and Relay,

In 1963 and 1964, the orbit question was finally, for the most part, resolved by
the results of the Syncom program, in favor of geostationary orbits. This completed
the early experimental phase of satellite communications wherein the fundamental

system concepts that have continued to apply were established,

Syncom demonstrated launch vehicle and satellite positioning and stabilization
technologies to precisely inject spacecraft into synchronous equatorial orbits, to
position in longitude and to maintain a satellite's longitudinal position (i.e., station~
keep). It further gave a preliminary indication that the long propagation time delay
(l.e., 260 ms one way) and the associated echo problems that it introduces into 2-wire
terrestrial telephone facilities were surmountable and, therefore, posed no drawbacks
to this approach to satellite communications, With synchronous technology proven, the
facts that only three or four satellites were required to provide a system giving world-
wide earth coverage between +75° of latitude, that earth terminal tracking requirements
were significantly relaxed though not entirely eliminated, and that the problem of hand-
over from one moving satellite to another no longer existed, made geostationary orbits

the preferred choice for point-to~point communication via satellite,

Syncom further refined the state-of -the-art by providing advancements in satel-
lite stabilization techniques and antennas, Syncom was spin-stabilized, as were |
Telstar and Relay, but in this case the spin axis was aligned at a 90° angle to the

orbital plane and precisely maintained in this orientation by H gas jets. This

8
22
allowed antennas providing pancake-shaped beams only slightly wider than required
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to cover the earth from synchronous altitude (i.e., 17°) to be employed. These

antennas provided gains of about 6 dB.

With the feasibility of satellite communications demonstrated and the basic
system concepts defined, interest turned in the mid-1960s to implementing operational
systems, further refinements of spacecraft and ground terminal technologies, and
developing advanced modulation and multiple-access techniques, including those
designed specifically for handling digital communications traffic. In 1965 and into
late 1966, the Intelsat and Molniya programs provided the beginnings of what was
later to develop into extensive operational systems. During this same period, the
X~Band portion of the LES program began to investigate technology refinements and

advanced techniques.

In early 1965, Intelsat I (Early Bird) was launched into a geostationary orbit
with the spacecraft located over the Atlantic Ocean and after a short checkout period
introduced the first continuous commercial communications services provided by
satellite. Early Bird employed satellite technology developed in Project Syncom to
provide communications between terminals that were, for the most part, upgraded
and modified versions of installations developed during Projects Telstar and Relay.
Early Bird provided a duplex high capacity trunk between the United States and Europe.
Its main technological contribution was to demonstrate, finally and conclusively,
through extensive subjective user evaluations, that time delay and echo are not serious

problems in synchronous satellite communications.

Shortly after the Early Bird launch, the first of the Molniya satellites, developed
by the U.S.S.R., began to appear in orbit, These spacecraft employed orbits uniquely
suited to provide service to regions lying entirely in the Earth's northern hemisphere.
The orbits selected are highly elliptical, with 12-hour periods and apogees occurring
over the northern hemisphere, These satellites provided the Soviet Union with a
long-haul, cross-continent, Moscow-to-Vladivostok communications trunk. Major
spacecraft technological innovations included flywheel stabilization, fully sun-
oriented solar panels, and antennas that fracked the earth independent of the main body
of the satellite.
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The X-Band LES Satellites of this pericd investigated despun satellite antennas,
automatic on-board spacecraft atiitude control, fully solid state tranSpoﬁder opera-
ting at X-Band, and ground terminal digital equipment providing random multiple
access, Antenna despinning was of Interest as a means of obtaining high gain earth
coverage pencil beams on spin-stabilized spacecraft. The X-Band LES satellites pro-
vided an initial indication of the feasibility of despinning by switching between elements
of a multi-element array encircling the spacecraft spin axis. However, since these
satellites were not at‘ synchronous altitudes, the full gain potential of the technique was
not demonstrated. Autonomous on-board attitude control to reduce ground control
requirements was initially demonstrated on a satellite stabilized relative to the sun,
Accurate on-board control of earth-oriented satellites remained to be proven. Solid-
state X-Band transponders were shown to be feasible, but their low efficiencies and
power outputs made them relatively unattractive as compared to the TWT output
amplifiers being employed on operational systems, Frequency hopping of the center
frequency of an MFSK chamnel was demonstrated to be a satisfactory approach to ran-
dom multiple access among users handling digital traffic. Frequency hopping was first
considered on Project West Ford and was of interest as a means to combat jamming
in military systems, resist radio frequency interference, and allow common occupancy
of the same frequency/time spectrum by users having low duty cycle random require-
ments for service, Error correcting sequential decoding of convolutionally encoded
messages was also shown to be a powerful means for improving performance in digital

systems operating at low signal-~to-noise ratios.

By mid-1966, the initial interests of the mid-1960s in operational systems and
advanced technology and techniques were supplemented by an interest in new applica-
tions. Up to this time, satellite communications had been looked upon, principally,
as just another means of providing the kind of communication services commonly
avatlable in the military and commercial long-haul telecommunications networks
(1,e., analog voice, TTY, low resolution facsimile, and television)., It now began to
be apparent that poweras and bandwidths were available to support wideband digital
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traffic such as might be produced by high resolution facsimile and computer-to-
computer applications, Additionally, the high satellite EIRP made available by
advanced TWTs and earth coverage pencil beams made it possible to provide communi-
cations and position location for small aircraft, shipborne, remote data platform, and
mobile land terminals, Between mid-1966 and late 1968, the Intelsat and Molnlya
operational systems continued to evolve, and the military IDCSP system was placed
into operation. During this same period, a significant portion of the UHF LES testing
was conducted, and th\e ATS program was initiated to investigate new technology,
techmiques, and applications.

In early 1967, the first successful launching of a second generation of Intelsat
spacecraft was accomplished. By late 1967, three Intelsat Ils had been successfully
launched, and commercial communications service was being provided over both the
Atlantic and Pacific Oceans, The advent of reliable tunnel diode amplifiers to serve
as relatively low-noise, high-gain satellite input preamplifiers allowed single RF
conversion fransponders to be provided on these satellites, Allowable satellite weight
and prime power in combination with new high performance earth terminals permitted
these transponders to be designed for linear input/output power transfer characteris-
tics. These wideband satellites and an expanded ground complex resulted in extensive
satellite multiple access in an operational system for the first time. Conventional
FM-FDMA was employed, and system control techniques were developed to provide a
high reliability operational system.

Concurrent with these Intelsat activities, continued launches of the Molniya I
spacecraft maintained an operational Russian system. With the addition of new ground
terminals, service in this system was considerably expanded in 1967 when the U.8.8.R.
inaugurated a space television distribution system, allowing people in Siberia, the Far A
East, and the Far North to view broadcasts from Moscow,

In late 1966, the first group of 7 IDCSP satellites were successfully injected
into near synchronous orbits, using a single launch vehicle, and by mid-1968 three
more successful launches had established a system including more than 20 satellites.
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This military system began to meet emergency operational requirements in December,
1968, and by mid-1967 it was declared completely operational. In this system of
multiple, near synchronous satellites, outage periods due to no spacecraft being visible
and during satellite handovers were overcome by scheduling around these events. The
type of system realized was the result of economic considerations dictating that a space
segment, initially designed and developed before synchronous technology was proven
feasible, be implemented, The system employed conventional modulation and multiple-
access techniques, ex\cept for high data rate (1Mbps) MFSK modemas for facsimile

tranemission and an operational pseudonoise antijam capability,

Extensive evaluations of approaches to realizing high gain, pencil beam, earth
coverage antennas were conducted during this périod. Techniques for realizing despun
antennas on spin-stabilized spacecraft were exhaustively considered, and gravity
gradient stabilization, such that rigidly mounted spacecraft antennas were continuously
pointed towards the earth, was seriously investigated for the first time.

Electronically despun phased arrays were flown on a synchronous ATS satellite
in late 1966, and on a near synchronous test spacecraft launched as part of the IDCSP
program in mid-1967. These tests demonstrated that this type of antenna system was
feasible, and gains of up to 14 dB were realized. Electronic switching as a means to
realize a despun antenna was given further consideration in the syﬁchronous UHF LES
satellite launched in late 1968, The feasibility of this approach was again demonstrated,
and a gain of about 10 dB realized. However, questions on the optimum approach to
antenna despinning were laid to rest when an ATS spacecraft launched in late 1967
demonstrated the feasibility of mechanically despun antennas, By late 1968, it was
apparent that the latter approach provided reliable performance and antenna gains of
about 16 dB, Additionally, weight and prime power consumption were competitive
with or superior to that realized by other approaches,

Gravity gradient stabilization was of interest because of the potentially high
reliabilities available from such a passive system, Launches of medium and syn~

chronous altitude ATS spacecraft, designed for this type of stabilization, were attempted
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in early 1967 and late 1968, respectively. Additionally, special near synchronous test
satellites, included as part of the IDCSP program, were launched in mid-1966 and
mid-1967. The ATS evaluations could not be conducted due to launch vehicle failures.
The IDCSP tests demonstrated a limited degree of success in initially establishing

and maintaining gravity gradient stabilization, but numerous unexplained difficulties
were encountered. As a result, by late 1968, the jury was still out on gravity

gradient stabilization, but the initial findings were not favorable,

The mid-1966 to late 1968 time period also saw considerable experimentation,
at VHF and the lower UHF frequencies, with providing communications tc small mobile
or remote terminals or both, The existence of extensive conventional small terminal
facilities was the primary driving force behind the initial interest in this frequency
band. A preliminary evaluation of propagation characteristics had been carried out
with the aid of a simple UHF beacon radiating satellite launched as part of the LES
program in late 1965, Additionally, a few simple demonstrations had been conducted,
using the telemetry and command system on a Syncom satellite,

More extensive experiments were made possible with the inclusion of a VHF
transponder on the first spin-stabilized ATS spacecraft launched in late 1966. These
experiments were extended further when a UHF LES satellite was launched in mid-
1967, and the second spin-stabilized ATS spacecraft, also including a VHF transponder,
was launched in late 1967. The emphasis in the LES experiments was on developing
a tactical military capability, while the interest in ATS was in demonstrating position
location and communications for application to commercial and private aircraft and
ships and to remote data platforms, The experiments performed considerably
advanced the state of knowledge of propagation and noise at these frequencies while
proving that such systems were feasible. Inthe LES program, the 'first experimental
tactical terminals designed for specific military applications began to emerge.

During this period, the spin-stabilized ATS satellites also demonstrated the
feasibility of a signal~processing satellite repeater that provided multiple access
through frequency-division multiplexing of independent single sideband uplink signals
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and down converting the composite received signal for phase modulation of a single
radiated carrier. This system was of interest because it supplied frequency spectrum
conservation on the uplink and efficient utilization of available spacecraft power on the
downlink, Additionally, a UHF LES satellite displayed that an autonomous control
system could accurately maintain a spin-stabilized spacecraft's spin laxis at a 90°

orientation relative to the orbital plane,

Between late 1968 and early 1971, the areas of concern that existed in the years
spanning the mid and late 1960s had to be further expanded to include consideration of
higher frequencies for providing the same types of services, Interest began to develop
in employing L-Band frequencies (i.e., a higher portion of the UHF band) for aircraft
and maritime position location and communications in the private and commercial
sectors, These frequencies are attractive because of the wider bandwidths and more
accurate position location afforded. Further, millimeter wave frequencies started to
be considered for commercial telecommunication services. The wider bandwidths
available and visions of overuse of the allocated C-Band spectrum were the driving
foreces behind this interest. During this period, the operational Intelsat system con-
tinued to evolve, the Molniya and IDCSP systems continued to supply satisfactory
operational service, the Skynet and NATO military systems initiated operational
service, the exploration of tactical military communications was continued by the LES
program and supplemented by a Tacsat satellite, and the ATS program conducted

initial evaluations of L-Band and millimeter wave communications.

In late 1968, Intelsat began to establish a third generation satellite system. By
early 1970, five successful launches had been completed, and a truly worldwide system
providing service over the Atlantic, Pacific, and Indian Oceans had been completed.
These satellites took advantage of the technology developed in the ATS proéram by
employing mechanically despun antennas. The transponders were again linear, single
conversion repeaters and FM-FDMA was the main mode of operation. However, |
experimentation was conducted on a8 PCM-PSK-TDMA system designed for 12- to 120- ‘
channel links and PCM-PSK-FDMA, SPADE, designed for links ranging from fractional

requirements to 12 and 24 channels., Both systems werz demoustrated to be feasible.

s 4
\.
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The TDMA development extended and confirmed earlier TDMA demonstrations con-

ducted as part of the ATS program,

Between late 1968 and early 1971, two new operational systems came into being.
A Skynet satellite was placed into a geostationary orbit providing visibility from Europe
and much of Africa, in late 1969, and an operational military system for the United
Kingdom was established, The satellite was based on technology developed in the
IDCSP program but pseudonoise PSK was used to provide multiple access in the first
all-digital operational system., NATO satellites were launched into geostationary
orbits in early 1970 and early 1971, They were positioned over the Atlantic to provide
operational service for the North Atlantic Treaty Organization countries and employed

conventional technology developed in the IDCSP and Skynet programs.

On the LES program, testing of the UHF satellite launched in late 1968 con-
tinued. In addition to displaying the switched antenna, this satellite demonstrated the
feasibility of high-efficlency, solid-state UHF transmitters operating directly from the
unregulated primary power source, autonomous satellite stationkeeping and station-
changing, and reliable pulsed plasma microthrusters. The demonsgtrated autonomous
stationkeeping capability, together with the previously displayed autonomous attitude
control system, provided the potential for significantly reducing future ground tracking
and command requirements. The spacecraft microthrusters were of interest as a
means towards attaining highly precise attitude control and stationkeeping systems.
Microthrusters were first considered in the ATS program as a means of providing
stationkeeping and stationchanging on gravity gradient stabilized satellites where the

attitude correction torques were quite low,

In early 1969, a Tacsat spacecraft was placed into a geostationary orbit and
used along with the latest LES satellite to further demonstrate and develop a tactical
military satellite communications capability, Tacsat included both UHF and SHF
transponders, an input/output switching capability, and an ability to vary transponder
bandwidth that afforded multiple commandable modes of operation, including cross-
band configurations. By early 1971, prototype operational tactical terminals, at both
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UHF and SHF, had been demonstrated for aircraft, ship or land mobile use. In addi-
tion, operational frequency~hopping MFSK modems had been displayed. This approach
was selected over pseudonoise PSK due to shorter acquisition times in a random-access
environment, relaxed synchronization requirements, and a greater resistance to the
multipath likely to occur in many tactical situations (e.g., as for aircraft communi-

cation at elevation angles below 20°),

In late 1969, the final ATS spacecraft designed for gravity gradient stabilization
was launched. The launch vehicle performed properly but control of the satellite was
lost during an initial spin stabilized period before location on-station in a geostationary
orbit. As a result, the spacecraft was left spinning about a longitudinal axis such that
it could not be despun and the gravity gradient booms deployed, By early 1971, this
final failure to demonstrate reliable gravity gradient stabilization at synchronous
altitude, along with the successful development of despun antennas, had caused interest
in this technique to wane, In spite of the improper stabilization, L~-Band and milli-
meter wave experiments included on this satellite were performed, and valuable data
was obtained that will contribute towards opening these frequencies for future use.

The millimeter wave frequencies evaluated were at 15. 3 and 31. 65 GHz.

Finally, in early 1971, Intelsat successfully launched the first of what will be a
fourth generation Intelsat space system, This satellite features éarth coverage and
fixed narrow coverage antennas on a mechanically despun platform. Additionally, it
provides 12 transponders of moderate bandwidth such that separate types of services
can be provided in separate channels (e. g., television distribution in one channel, high
capacity telephone trunks in another, and low duty cycle individual voice links in still
another). Major contributions of the satellite communication programs completed or

in progress as of mid-1971 are summarized in Table 1-2.

Looking into the immediate future, it can be seen that two new programs,
Telesat and DSCS Phase II, are on the horizon, as is a third basic configuration of ATS
spacecraft, Gazing even deeper into the years ahead, the CTS and US domestic satel~

lite (Domsat) programs are among the emerging satellite communications activities.
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Erogram

Table 1-2. Summary of Major Contributions

Primery Results

Scare

{1

Demonetrated feaslbllity of amploying metive orbiting estellitea to relay messsges over intsrcontinen-
ta]l distences,

Echo

(1

Dieplayed Teaaibility of erecting and maintainting large lightweight etructures adsguate to msrve ap
passive rellectora in apemce. {ES Verified that convantioasl misrowave theories for deternining path
loes could be applied to satellite links, (3) . Foeterad developmant of ground terminsl technology
including low noilse receiver preamplifiers, FMFR receivers, accurate tracking techniques and terminel
operating procedures.

Courier

Plaplayed feampibility af high cepacity hlgh rate digitel atore & forward satellite system.
Demonptrated d1fficulty of attaining lifetime & relimbility need Tor operatlconsl systeme.

Weat Ford

(1)
(3

Showed that ¥-Band dipoles can be diepersed {nte a penaive raflecting belt., (2) Displayed that belt
15 pradictebly affected By Beler radtlation pressure & doss not interfere with radlio metronomy.
Demonatrated that communications are feasible and multipath time delay & froguency Shesk are predictedla.

Trlotar

(1

Demongtratad performance and reliebility, Adequata for commercial cpsratione, can be stteined wit*
aclive eatellites, (.’eg Verified that altipath fading whs not aignificant for oparation at U-6 OHz
and elevaticn snglez abave faw degraer. [3) Diaplayed accurate and rellsble scquisition and auto-
tracking of active estellites,

Reley

(1)

N-on-F sclar calln shown to be more resistant to radiatlon then P-on.N cells. (2; Displeyed that
dew point oriter!s and leskaga temta mhould be included in powsr tranaistar spezificetions, 3
Tadiceted that relatively complex command 8ignals ere nscessary to avold spurious rssponses.

Syncom

(1)

Demonstratad Teasibility of placing & aceurately poaitiening aatallites in synohroncus ortit. ([2)
Provided firat, in orbit, demonatration that time deley and echo are nct sarious problems 1in
aynchropous sstellite compunications.

LES

(1)

Diaplayed femsibility of all sclid etate X-Band catelllts tranoponsars sven though power SUE &
efficiency wera relstivaly low. (2) Demonptrated Fessibility of X-Bend & UHF slectronicelly
swlitched despun mnteanms. (3) Advanced state ol kpowladge of UKF propagation & noise including

RPI. (4) Diaplayed workable éxperimentsl taotical ground terminels, (5) Demonstrated ressibility
of nigh efficiancy UHF estellite tranamittarc opersting from unrsgulated sclar erray power supply
(6} Asturate sutenomous apin axis sttitude control wees exhibited, é?} Parformancas potentisl of
sequential decoding a5 appiisd to satallite links was displayed. (&) Frequency hopping was. ahawn
to provide setisfectory random access & resistance to multipath & RPI, (G) Demonstreted sibility
af autonomous Atationkseping and staticn chenging. .

Inteleat

1)

Damcnstrated that time delay & #sho Are not sarious problame in commarcial communtostions

threugh aynchronous esatellites, (2) Displayed aingle zonversicn linear satellite repeatera,

(3) Employed Tirst satellits anternas having beamwidths considerably narrower than required for
earth ¢sverags. (4} Developed technigues for control b operation of s high Hlinbilit; operational
system. (B} Developed and demonatrated PCM=PSK=TDMA trunking ayatams. (&} Devaloped PCM=PSH-FUMA
single veice channel myatem (i.s., SPAPE).

Molniya

2]

Demonatreted feasibility of speraticnal syatem in northarn hemlsphere using 12 hour 4ighly elliptical
orbits, [(2) Displsyed siectric motor driven, flywheel stebllized apacecraft with esrin tracking
antennas & capabllity of orienting solar pensla towarde sun.

IDCSP (DSC3 FPhaee I}

(n

Demonatratad operational syatem compossd of large numosr of simple rendom orbit sateliites can be
eatablished & maintaiped. (21 Displayed fesaibility of wide band high deta rats (1Mhpa l aptellite
tranamiselone of high resclution imegery. (3) Demenatrated & limited degree of puccase in fnitially
establishing & maintaining gravity gredient atebilization but encounted numercus unexpleined
difficultias. (4) Displayed operational fem resistant psusdonclae modema.

ATS

Demonatrated feasibility & potential of elactronic despinning using pnesed arrays. (2) Diapleyud
fensibility & attractivensms of mecnhanically despun sntennas. (3) Showed that singla- sideband
rragquency divielonmultiplexing on uplink & phase medulation by the compomits racaived signal on
downlink ia practical means of multiple acceas., (4) Demonstrated fasslbllity of VHF aatellite
communications ameng small mebile terminale, ({5) Provided data sn millimeter weve propagstion.

6) Gave initinl indication of potentisl L-Band holde for sircraft and maritime communications

7) Displayad the ¢iffisulties that can ba encountersd in sttempting tc deploy & initialily stebilize
gravity gradient stabilized matellites,

TAcaat

(1)

Demonstratad operational UHF and 3KF moblle earth terminala. (:!1 Displayed feasidility of chanoel=
1zed stellite rapnater capable of switched Input/output conaectluona. (1) Provided gyrostat
satellite atabilizaticn. {U) Demonatrated operational frequency hopping modem.

Skynet

(1)

Provided firet operationsl all digital satellite system ueing spread spsctrum multiple access.

NATO

(1)

Employed coriventional FM=FDMA tachnology to minimipe syatem risk.

1~21



These programs will continue to advance spacecraft and ground terminal technology,
investigate new applications for satellite communications technology, and evaluate the
potential for opening new frequency bands for utilization. The Telesat program will
provide Canada with a commercial domestic satellite communications system. The
ground complex will include small simple terminals for unattended remote operation
in far northern and arctic locations, as well as more conventional terminals. The
DSCS Phase II will provide the U. S, military with an operational second generation
system to replace the IDCSP. The satellites will demonstrate accurately steerable

narrow coverage antennas.

The new ATS spacecraft will include a 30-foot diameter parabolic antenna,
highly accurate 3-axis stabilization using gas jets and error signals derived from a
monopulse receive tracking system, and input/output switching among multiple trans-
ponders receiving and transmitting in different frequency bands, The first of these
satellites will investigate the feasibility of employing a synchronous communications
satellite as a relay for tracking other satellites and transferring digital signals between
them and a ground station, of aircraft position location and air-to-ground communi-
cations using a synchronous satellite, and of supplying FM TV reception to small UHF
ground terminals with the benefit of a 30-foot satellite antenna, Additionally, this
spacecraft will investigate uplink RFI at 6 GHz, millimeter wave propagation at 20 and

30 GHz, and signal attenuation at 13 and 18 GHz caused by atmospheric hydrometeors.

The CTS satellite will include a super-efficiency power transmitting tube, pro-
viding a 200-watt minimum output at 12 GHz, unfurlable solar power arrays of approxi-
mately 1,5-kilowatt initial capability, liquid metal slip rings, and electric propulsion
for accurate stationkeeping and stabilization using flexible appendages. High power
RF transmitters at frequencies above 10 GHz and prime power sources of kilowatt size
or greater represent technology that will be needed for educational and community TV
satellite broadcast systems, interplanetary space probes, and large earth-orbiting
platforms, The liquid metal slip ring experiment should demonstrate a means of

alleviating many of the problems characteristic of transferring high power across
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rotating interfaces. Eleciric propulsion provides the potential for reducing one of the
constraints on narrowing the spacing between satellites in synchronous orbit, Exces-
sive drift and instability could result in major interference problems and degraded
communication capabilities. In addition to the advanced technology experiments, CTS
will provide the vehicle for investigating numerous user applications. These may
include educational TV, biomedical networks, law enforcement networks, and service

for the handicapped applications,

The U.S. Domsat program provides the potential for supplying point-to-point
trunk and multipoint message telephony; telegraphic and wideband data; and network,
educational, and community antenna television services that complement and improve
the services presently provided by terrestrial facilities. Eight applicants filed for
permits from the Federal Communications Commission (FCC} to construct U.S. domestic
satellite systems by the March 15, 1971 filing deadline. The Commission's invitation
to file covered systems ''for multiple or specialized common carrier services, for
lease to other common carriers, for private use, joint cooperative use, or any com-
bination of such services.'" The applications filed propose widely varying types and
levels of service for a diverse group of potential users, The FCC has a goal of ruling

on applications by mid-1872.

A whole new industry was brought into being in the 1960s built on technology
demonstrated by experimental satellites such as Relay, Telstar, and Syncom. Simi-
larly, rapid growth of existing capabilities and initiation of new space communications
applications, such as high rate information transfer, data collection, educational
broadcast, and traffic management, are sure to occur during the 70s, based on the

results of experiments described in this document,
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SECTION 2 - SCORE

2.1 PROGRAM DESCRIPTION

The objective of Project SCORE (Signal Communication by Orbiting Relay
Equipment) was to place in orbit an 80~foot Atlas missile and to use this as a plat-
form for a communication system capable of spanning intercontinental distances,
The ultimate goal was to demonstrate the feasibility of such a system and to explore
some of the technical and operational problems that would attend a military satellite
communication system, The communications portion of the project was assigned to
the U.S. Army Signal Research and Development Laboratory, Fort Monmouth,

New Jersey, late in July 1958, SCORE was successfully launched by the Air Force
on December 18, 1958, thus becoming the first communications satellite, The

orbital parameters are given in Table 2-1,

Table 2-1, Participating Spacecraft

Satellite SCORE
Manufacturer/Sponsor U. 8. Army, ARPA
Launch Date December 18, 1958
Launch Vehicle Atlas 10-B
Apogee (mi.) 928
Perigee (mi.,) 115
;7;‘.; g Inclin, (deg.) 30
S Period (min. ) 101
Status Expected Life of Orbit:
20 Days; Actual life of
orbit: 35 days, Commumi-
cations failed December 30,
1958, due to battery failure




This first satellite communications system functioned for approximately 12
days, achieving its desired goals - to demonstrate the feasibility of an orbital relay
that could span intercontinental distances, Among the achievements attained during

the experiment were:
1. The first successful relay of teletype signals through an orbiting station.

2. The first successful delayed repeater communication from earth to

satellite to another point on earth at a later time,.

3. The first successful multichannel teletype transmission by a delayed

repeater,
2.2 SYSTEM DESCRIPTION

Two complete communications packages were installed in what are normally

the guidance pods on the sides of the Atlas missile. Ground equipment installed

in army vans with associated support vehicles was located at Fort MacArthur,
California; Fort Huachuca, Arizona; Fort Sam Houston, Texas; and Fort Stewart,
Georgia, All ground stations were linked by both telephone and HF radio to the
system control center at the Signal Corps Laboratory in Fort Monmouth, New Jersey.

The design of the system was based on providing two modes of operation — as

a delayed repeater and as a real time active repeater. In the delayed repeater mode,

the satellite would record information transmitted to it upon reception of a suitable
command signal from a ground station. Upon reception of a different command signal,
the satellite would transmit the previously stored information back to the originating
ground station. The second mode of operation, that of a real time repeater, was
obtained by the use of yet another command signal which activated the satellite as a
radio relay repeater station with the recording mechanism bypassed. The capacity

of the system was one voice channel or geven 6(0-wpm teletype channels, frequency

division multipiexed.



The satellite receiver was an FM "paging" receiver - the type often used by
doctors and salesmen to receive telephone calls when away from their offices. A
commercial transistor model was modified extensively through the addition of an
RF stage using selected transistors to increase its sensitivity. A vacuum tube
transmitter from an FM handie-talkie was repackaged and modified through the
addition of a high power (8 watts) output stage, A continuous loop magnetic tape
recorder developed at the Signal Corps Laboratory was used as the message
storing device, Seventy-five feet of magnetic tape was used to provide 4 minutes
of audio recording. The control unit responded to command signals from the
ground and activated the receiver, the transmitter, or the magnetic tape recorder.
Three modes of operation were commanded - record, playback, and real time.
Since the satellite was expected to orbit for only 20 days, a non-rechargeable high
capacity zinc-silver oxide battery was employed rather than heavier and more

costly solar and nickel cadmium cells,

The Atlas missile itself was used ag the antenna and was excited by slots
Iocated in the two pod covers. The resulting radiation pattern was similar to a

long wire doublet with associated nulls,

Spacecraft characteristics for the SCORE satellite are displayed in Table 24,

A system diagram of the satellite is shown in Figure 2-1.

DIPLEXER RECEIVER [e~{ CONTROL [ o] nliﬁggﬂg:..

1

BATTERY

TRANSMITTER SUPPLY

TRACKING
XMTR

Figure 2-1, SCORE Satellite Interconnection Diagram
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VHF frequencies were used to minimize the effects of cosmic noise and
ionospheric propagation while still permitting the use of sensitive, transistorized
receiving equipment in the satellite. The operating frequencies employed in Project
SCORE are given in Table 2-2, The IF bandwidth chosen was as narrow as possible
consistent with frequency stability, Doppler shift, maximum audio frequency, and

carrier frequency deviation,

Table 2-2, Frequencies Employed in Project SCORE

Uplink Downlink Beacon

150 mHz 132 mHz 108 mHz

Narrowband FM was selected as the modulation technique with a deviation
ratio limited to 1.0 at 5 kHz, Additional data on the modulation technique is shown

Table 2-3. Signal Processing Employed in Project SCORE

Single Access One Voice Channel or Seven 60-wpm teletype
RF Modulation Narrowband FM, Deviation = +5 kHz
Demod. Performance 10 dB
(FM Threshold)
Link Margin (Up/Down) 39/19 dB*

*At a slant range of 1000 miles.
2.8 SPACECRATT

The 142-1b payload consisted of two complete repeater terminals installed
in what are normally the guidance pods on the sides of the Atlas missile. Each
package contained a receiver, transmitter, magnetic tape recorder, control unit,
beacon transmitter, dec to dc converter, and battery., Communications character-

istics of the satellite are summarized in Table 2-4,
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Table 2-4. Satellite Characteristics

Type Slot Antenna
o Number Two recelving, two transmitting
é Xmit., Beamwidth No Data
ki Gain -1 dB
='——"—w
Frequency Band VHF
Type Store-and-forward/real-time repeater
Bandwidth 40 kHz
Number Two
Type Front End Transistor
e
g g Front End Gain No Data
a[= stem Noise Fig. 10dB
g
=1
Type Vacuum Tube
& Gain No Data
E Power Out 8 Watts
——
EIRP 8 dBW¥*
L Type None
2 8
gg Capability None
| ]
@l 4e Primary Zinc-silver oxide battery
§ é% Supplement None
]
QD
=
E Comm. Power Needs 53 Watts
Q[
g Size Mounted on Atlas Missile of dimensions
of 85 it. long by 10 ft. diameter
Weight 142 1bs.

*Derived value based on available data,
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2.4 GROUND TERMINALS

Each of the communication ground terminals noted in Paragraph 2.2 included
two transmitters and receivers for communication, each capable of operating on
two frequencies; two beacon receivers for tracking and temperature recording; and
two control units, The equipment configuration is shown schematically in Figure 2-2;

it was housed in a 35~foot semitrailer,

A4

ANTENNA
PEDESTAL
1
ANTENNA
FILTER
ANTENNA | BEACON
CONTROL REGE {VER|—| RECORDER

T-R | COMM. TRl“ichg‘ng | | TELETYPE
IRELAY RECEIVER [ {TERMINAL| | PRINTER
MICROPHONE

RECORDER
VHF

TRANS- TELETYPE] [TELETYPE
MITTER —°°l:",;r :‘19'- TRANSM I T|— TRANS-

TERMINAL DIST.

Figure 2-2, SCORE Ground Station Interconnection Diagram

The VHF communications receivers and transmitters in the ground station were
commercial FM equipment adapted for use in the SCORE Project. For monitoring
the satellite's tracking beacons, receiving equipment was provided which enabled
reception of the tracking frequency near 108 MHz, In all but the California station,
the ground antenna was positioned by an operator maximizing the 108-MHz signal
reception with the antenna positioning controls. At the California station, the azimuth
control was slaved to the alidade of an experimental direction-finding equipment while
the elevation control was manually varied. The communication characteristics of the

ground stations are tabulated in Table 25,
2.5 EXPERIMENTS

On the first orhit, attempts were made by the California ground station to

interrogate the communication package designated No., 1. An excellent carrier was



Table 2-5. Earth Terminal Characteristics

Terminal
Feature
Type Quad-helices Array
Aperture 13-ft-square
o Gain (108/132/ 9/14/16 dB
5 150 MHz)
g Efficiency No Data

Rec. Beamwidth Approximately 30° @ 3 dB Pts*

Receive
System

Type Preamplifier No Data
Bandwidth 40 kHz
Noise Temp 6 dB

Type Amplifier No Data

e
5 E Bandwidth No Data
£ & Power Output 250 or 1000 Watts
b
'E Type Manual**
Q
E Accuracy No Data
- & G/T ~17 dB/°K*
8%
a 0 EIRP 75 dBm*
&
[]
é 8 Transmit Feed Cireular
2w
g gt Receive Feed Circular
5‘, Random None
=
ﬁ o Type Facility Transportable
Notes: *Derlved value based on available data.

**Except for azimuth control from experimental direction-finding equipment at
California station, '




received from the communication transmitter, but no modulation. Since no other
orhit that day was close enough to the ground station, no further attempts were
made to interrogate the communication equipment. On the following day, package
No. 2 was interrogated by a temporary site established at Cape Canaveral (now
Cape Kennedy) for prelaunch checkout. It responded and the ground crew received
the following prerecorded message from President Eisenhower:

This is the President of the United States speaking. Through the marvel

of scientific advance, my voice is coming to you from a satellite cireling

in outer space. My messageis a simple one. Through this unique means,

I convey to you and to all mankind America's wish for peace on earth and

good will towards men everywhere,

On each of the subsequent days, each function for which the equipment was
designed was tested and successfully demonstrated. Among the experiments per-

formed were the following:

1, Initially, transmission of President Eisenhower's prerecorded voice

message followed by one channel of teletype code.

2. Direct relay of California's communication site identification in voice,
followed by the President's message in teletype code., The Texas site
received these signals with two short fades and the Arizona and Georgia

sifes received portions of the transmission.

3. While clearing the tape recorder, California transmitted in voice to the
satellite for storage. Texas interrogated the satellite, and both Texas
and Georgia received the voice loud and clear. Then Georgia reinter-

rogated the satellite and received the message again.

The above tests were performed in other variations using voice and one channel
of teletype until the fortieth pass, when the Georgia site sent seven simultaneous
multiplexed teletype messages in a single transmission to the satellite for storage.

The satellite was then interrogated and good teletypewriter copy was received,



In summary, the communications package was interrogated 78 times, loaded
with new material 28 times, and operated as a real time relay for a total of 117
deliberate operations. Until battery exhaustion on December 30, 1958, the satellite
demonstrated conclusively the practical operation of a satellite radio relay system

capable of spanning intercontinental distances,
2.6 OPERATIONAL RESULTS

Since Project SCORE was an experimental program, no operational traffic was
passed. Further, the operational reliabilities of the satellite and ground terminals
were generally good and in agreement with prelaunch expectations, This performance
reflected the exclusive usage of state-of-the-art hardware that characterized this

system's implementation,
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SECTION 3 - ECHO

3.1 PROGRAM DESCRIPTION

R&D efforts that led to the Echo satellites descended from an IGY program that
the National Aeronautics and Space Administration, NASA, had inherited from its
predecessor organization, the National Advisory Committee for Aeronautics, The IGY
balloon satellite had been conceived and designed primarily for air density experiments.
NASA took charge of this activity and reformulated it as Project Echo in late 1958,
(1)(2)

Major objectives for the Echo program were as indicated in Table 3-1.

Table 3-1. Echo Program Objectives

Number Description

1 To evaluate the communications capability available
from large spherical passive satellite reflectors.

2 To study the feasibility of erecting and maintaining
large lightweight structures in the space environ-
ment,
3 To gather data on solar pressure and the outer limits - |

of the earth's atmosphere as well as evaluating their
effects on satellite orbits.

Of three attempts to orbit passive reflecting balloons during this program, two
of these efforts were successful. The launches and satellite status are reviewed in

Table 3-2. (DA

Prior to the initial Echo launch, extensive ground, vacuum chamber, and space
ballistic tests were conducted.(l)(z)(s) The ground tests employed prototype spheres
to confirm sphericity and structural integrity of basic balloon design. The vacuum
chamber tests evaluated balloon release from its containing canister, unfolding, and
inflation during free fall at NASA's Langley Research Center. The balloon deployment
system was refined and space-qualified during four launches into a ballistic trajectory
by modified Sargent rockets from NASA's Wallops Island, Virginia, launch site, These

launches were code-named Shotput I through IV, The first launch on 28 October 1959
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resulted in the sphere rupturing into a thousand pieces.

After two more tests on

16 January 1960 and 27 February 1960 and changing the folding pattern, inflation

system, and prelaunch payload conditioning cycle, a successtul vertical test was

conducted on 4 January 1960.

Table 3-2. Participating Satellites
Satellite Echo A-10 Echo I Echo II
_Manufacturer & Sponsor G. T. Schieldahl{l) & NASA
Launch Date 5/13/60 | 8/12/60 1/25/64
Launch Vehicle Deltaf2) Thor-Agena B
. Apogee (mi,) No 1051 816
Orb‘t;‘l Perigee (mi. ) Orbit 941 642
Data( ) Inclination Attained 47.2° 81. 5°
Period (min, } 118.2 108,.8
Satellite lost Orbit decayed Orbit decayed
Status due to second 5/24/68 resulting | 6/7/69 resulting
stage attitude in satellite in satellite
control malfunction | destruction destruction

Notes:; (1)

Radio Corporation of America.

Balloon manufacturer. Beacons on Echo I and II supplied by

(2) Thor-Delta with the Delta being the improved second and
third stages of Vanguard,

(3) At initial injection. Solar pressure and atmospheric drag
substantially altered parameters

Subsequent to the failure of the initial launch, a fifth Shotput test was conducted

on 31 May 1960 to qualify the sphere with radio tracking beacons attached. These

beacons were left off the payload during the initial orbital launch attempt, since they

had not been previously qualified by a vertical test,

Following these activities,

Echo I was successfully launched from Cape Kennedy, Florida, into a near circular

low altitude inclined orbit.

It was an immediate resounding success, being large and

reflective enough to be seen against the nighttime sky with the naked eye. During its

lifetime, valuable information was contributed towards meeting all the program

objectives listed in Table 3-1,

communications was demonstrated,
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The one drawback of the Echo I balloon was that it was not rigid enough to remain
smooth and spherical under the deforming forces of atmospheric drag and solar
pressure after its pressurizing gas leaked out.(l}(z)(ﬁ) Its shape deteriorated signi-
ficantly within a few weeks after launch. In recognition of this, efforts were inititated
in late 1960 to develop a second generation Echo balloon that was rigid enough to

withstand the deforming forces.

Once again, static ground tests, vacuum chamber drop tests, and vertical space
tests were conducted. The first two groups of tests were again conducted in the
dirigible hanger at Weeksville, North Carolina, and at Langley Research Center,
respectively. The two vertical launch tests occurred 15 January 1962 and 18 July 1962,
employing a Thor rocket from Cape Kennedy. TV and movie cameras mounted in the
Thor followed and photographed the payload from ejection through reentry, In the
first test, the balloon blew up due to excessive inflation pressure. During the second
test, a different balloon inflatant resulted in successful balloon deployment, but

pressurization was not great enough to provide a good reflecting surface.

As a result of the suborbital tests, it was concluded that a thorough evaluation
of inflation characteristics was necessary by means of full-scale balloon statics ground
tests. These were conducted in the dirigible hanger at the Naval Air Station,
Lakehurst, New Jersey. Following further refinement of the pressurization system
during these tests, Echo II was successfully launched from the Western Test Range

(i.e., Vandenberg Air Force Base, California) into a near polar low altitude orbit.

Immediately after the first pass, it was determined that internal pressurization
reached no more than 1000 psi as compared to the 5000-6000 psi expected, and the
balloon was rotating about an inertial axis with a spin period of about 100 seconds.('?)
These occurrences produced forces within the satellite shell that caused the surface
to wrinkle somewhat. As a result, unexpectedly high scintillations of the reflected
RF signals were encountered. In spite of this, the balloon remained an effective
passive communications reflector and demonstrated that a lightweight spherical

balloon could maintain its shape and surface characteristics, even after the loss of
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inflatant pressure. Valuable information was contributed towards meeting all the

program objectives listed in Table 3-1.

Numerous terminals from various countries conducted communications operations
with the Echo satellites in response to an open invitation by NASA for worldwide utiliza-
tion. Some of the major participating terminals are listed in Table 3-3. (See
references 1, 5, and 8 through 12.) Additionally, innumerable terminals distributed
over the entire world, at one time or another, conducted radar or optical tracking
operations with these satellites. NASA's minitrack network supplied the data from
which Goddard Space Flight Center derived orbital tracking information for all

interested parties. Satellite launchings were provided by NASA,

The Echo program, which through Echo I provided the first extended satellite
communications experiment, made a host of significant contributions to satellite
communications technology. First, in reaching its major objective, it demonstrated
the feasibility of using passive satellite reflectors for communication purposes and
verified the theoretical limitations of such 2z system. Additionally, it verified the
conventional theories for determining path loss on satellite links. Further, it
fostered the development of much of the ground terminal technology that continues to
be employed. Specific ground terminal items first demonstrated in the Echo project
included a large-scale horn reflector antenna at Holmdel, low-noise receiver
preamplifiers using solid state masers, frequency modulation feedback receivers,
and satellite tracking of sufficient accuracy to allow real-time operational communica-
tions. BSatellite tracking by radar, telescope, and computer predictions all proved to

be quite reliable, Radar tracking operations included successful autotracking.

3.2 SYSTEM DESCRIPTION

The system configuration for the major participants involved in the evaluation of
communications via Echo I is depicted in Figure 3-~1. () Separate transmitting and
receiving antennas, each operating at different frequencies, were employed at both

Goldstone and Holmdel to provide full duplex operations. A single antenna capable
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Table 3-3. Participating Terminals

ANTENNA SATELLITE
LOCATION SPONSOR DIAMETER (ft) EMPLOYED
Goldstone, California | Jet Propulsion Laboratory 8.5 (2 dishes) Echo I
Holmdel, New Jersey | Bell Telephone Laboratories 60 & 20 Echo I
Stump Neck, Maryland| Naval Research Laboratories 60 Echol & II
Paris, France Centre Nationale d'Etudes 30 Echo I
des Telecommunications
Jodrell Bank, England | University of Manchester 250 Fchol & II
Schenectady, New York| General Electric Labora- 28 Echo 1
tories
Cedar Rapids, Jowa Collins Radio Corporation 28 Echo 1
Dallas, Texas Collins Radio Corporation 60 & 28 Echo I & II
Columbus, Ohio Ohio State University 30 (4 dishes)* Echo 11
Gorky, Russia Zimenki Observatory 4-9 Echo II
Trinidad United States Air Force 84 _ Echo II
Rome, New York United States Air Torce 33 Echo II

&Operated as phased array

of alternate transmit or receive operation at the same frequency was utilized at Stump
Neck. The Goldstone terminal employed a third frequency and its separate transmit
and receive antennas to provide a radar tracking capability. (13) Ordinarily, both
Holmdel and Stump Neck received from Goldstone during the first part of a satellite
pass. After the balloon set for Goldstone, Stump Neck then transmitted to Holmdel.
On a few passes, both Goldstone and Stump Neck simultanesusly transmitted to
Holmdel, using circular polarizations of opposite sense and slightly different transmit
frequencies. Echo I provided periods of mutual visibility up to about 15 minutes for

Holmdel and Goldstone and 25 minutes for Holmdel and Stump Neck.
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For the Echo II communication experiments, the system configuration for the

(10)

principal participants was as illustrated in Figure 3-2, The configuration was
such as to provide half duplex communications as the primary mode of operation.
Normally, Dallas transmitted while Stump Neck or Columbus or both received.

Dallas could transmit on either of two frequencies and Stump Neck could receive either
of these frequencies. However, Columbus received on only one of the Dallas trans-

mit frequencies,

The Dallas site included a second transmit antenna used in radar tracking
operations to a receiver operating off the communications transmitting antenna, Radar
tracking was performed at a separate frequency from the communication frequencies,
and Stump Neck included a receive capability at that frequency. Stump Neck also
included a communications transmit capability for use in special cases, East Coast
to West Coast mutual visibilities were increased over those for Echo I by the higher

orbital inclination of Echo IIL.

Frequencies employed for communications and radar tracking operations with
the Echo satellites gpanned a wide range extending from VHF to S-band. This was a
result of performance as a function of frequency, being, in general, unaifected by these
passive reflectors. Strictly speaking, fading, due to scattering from the wrinkled
skin of these reflectors, did become more of a problem at the higher frequencies.
Operating frequencies for the major participants involved in experiments with Echo I

(5)(10) respectively. The two GHz

and I are summarized in Tables 3-4 and 3-5,
frequencies were chosen because they were available for allocation by the Federal
Communications Commission and because they were the correct frequencies for
future satellite and deep space communications activities. The 960-MHz frequency
was chosen because equipment on this frequency existed at Goldstone from an earlier

program,
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Table 3;-4. Echo I Ope_rati'ng Frequencies .

Goldstone to ﬁ_olmdel- #, .| » :Goldstonetp .. .. Holmdel to .. - - Stump Neck to
or Stump Neck 1 Goldstone _’Go_ldstone‘ R .Holmdel
2390 MHz | | .2888MHz . . | . 9s0MHz .. | . . 2390MHz

_Table 3-5. Echo II Operating Frequencies’

Dallas to » : Dallas to = ‘ Dallas to

Stump Neck . SRR (RN Columbus Dallas’
2260 MHz or . . |- 2260 MHz 2190 Mhz
2380 MHz - N . .
The bas1c s1gnal processmg techmques employed for the Eeho I tests are_:.
(5)(14)(15)

summarized in Table 3-6. There were no multlple«access restrxctlons
except the normal requn‘ements for s1gnal orthogonality, since the satellite was |
simply a passwe reflector. Therefore, any of the commonly conceived multiple-
access techniques (e.g., time, frequency, and code-division multiple access) could
have been employed. Frequency division was used becausé of its ready compatibility
with common existing earth terminal technology. For a perfectly spherical reflector
with a smooth skin, there are likewise no satellite—-imposed restrictions on the RF
modulation techmque employed However, for a deformed reflector mth a wrinkled
skin, both fadlng and 11m1tat10ns on the coherent bandwrdth are 1mposed Frequency
modulation (FM) is normally effective in the face of fading as long as the coherent

bandwidth of the channel isn't exceeded. Large margins are required for an Opera— |

tional system of this sort.

Margms, for a perfectly reﬂectmg sphere, must account for varxatlons in range,
atmospheric and 1onospher1c attenuation and no1se antenna trackmg and polarlzatmn
losses and ground termmal performa_nce For an 1mperfect sphere suoh as Echo I _
margms must be further mcreased to account for signal fadlng due to scattermg off

the balloon surface and changes in the instantaneous reflectwe cross sectmnal area.




Signal processing techniques were basically the same for Echo II as for Echo 1.
Performance was improved somewhat primarily due to an average reflective cross
gsectional area that was 3 dB larger, slightly shorter ranges to the satellite, and the
fact that the balloon shape did not deteriorate as a function of time. Additionally,

both frequency and space diversity were tried as means of combating coherent fading,

Table 3-G. Signal Processing for Echo I

Multiple Access FDMA for an Unlimited Number of Usersi

1
RF Modulation FM,( ) single sideband, narrow-band
phase modulation, and conventional
amplitude modification,

Ground Demodulator FMFB receivers employed giving thresho.ltg
Performance at about 13 dB C/N in 6-kHz bandwidths. (2
Holmdel Receive Carrier- 34. 2 dB for Goldstone transmit, satellite
to-Noise midway between terminals, and 6-kHz
noise bandwidth.
Holmdel Receive Margin About 21 dB.(a}
Notes: (1) Frequency modulation was normally used.

(2} In normal 60-MHz RF bandwidth, threshold oceurs at 3-dB C/N.

(3) High margin allows successful operation in spite of significant signal
fluctuations. Also allows good quality communications employing
modulation techniques with considerably less processing gain than TM.

3.3 SPACECRAFT

Echo I was a hollow sphere constructed from gores of 0.0005-inch thick Mylar
with the external surfaces coated with vapor-deposited aluminum to provide efficient

(1) In this design, long cigar-shaped pieces are cut out of

radio-wave reflectivity.
sheet material and joined together with "butt" seams, Where the "gores" come
together at the two poles of the structure, a reinforcing "pole cap' was used, The
sphere was designed to have a 100-foot diameter when inflated and weighed approxi-

mately 135 pounds.(3)
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Before launch, the satellite was evacuated and accordion-pleat folded for pack-
ing in the spherical launch container, The launch container, measuring 26 inches in

diameter, was also evacuated to a rather low vacuum prior to launch.

When the container was placed in orbit, it was explosively separated at its
equator and the satellite was initially inflated by the small amount of residual air

(16) Inflation was completed and the shape of the inflated

entrapped within its interior.,
satellite was temporarily maintained by the small gas pressure created by sublimating
solids (i,e., 20 pounds of anthraquinone and 10 pounds of benzoic acid) contained

(2)

within the satellite, These inflatants could produce a skin stress of about 150 psi

in Echo I and the pressurized life of the satellite was approximately 14 days.

Initial tracking of the satellite was greatly aided by two radio beacon transmitters
attached to the sphere's external surface. Each of the two assemblies, located
diametrically opposite on the equator of the satellite, include one transmitter, its
associated antenna, a group of solar cells and one-half of the satellite's storage-

(18)

batteries, Each of the continuous wave transmitters was designed to provide

about 10.5 milliwatts of power at a frequency of 107.94 MHz. Crystals were chosen

to provide a frequency separation of 500 to 1000 Hz between the two transmitted signals.
. The quarter-wave monopole antenna for each beacon transmitter was erected normal

to the satellite surface. The radiation pattern provided was somewhat similar fo -

that of a monopole antenna ahove an infinite plane.

(1)

In Echo II, the basic type of gore construction developed in Echo I was retained.

(2)

It was made up of 106 gores with each gore measuring 4 x 215 feet, The gores
were butt-jointed together, using 1-inch wide tapes made of the same material as the
gores. The gores terminated at the polar areas of the sphere where 54-inch diameter
pole caps were attached, using a 1-inch overlapping joint. The material used was a
3-layer sandwich of . 00020-inch sheets of aluminum on each side of a , 00036-inch |
mylar polyester film. The total skin thickness was . 00075 inch, which was only 50
percent greater than that of Echo I but it produced a rigidity about 100 times greater.
This construction resulted in an inflated sphere measuring 135 feet in diameter and
weighing 550 pounds.
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The structure was folded and packed inside a launch canister having an elliptical
vertical cross section and a circular horizontal cross section as mounted for launching. (6
The canister had a 30-inch vertical diameter and a 44-inch horizontal diameter. The
container, as well as the satellite, was eyacuated to prevent excessively rapid
inflation by expansion of residual air inside. The canister was separated in orbit in
the same manner as for Echo I and residual air again provided the initial inflation.
However, continued inflation and full pressurization were accomplished in a much more
controlled manner. In this system, the inflatant, now pyrozole, was sealed in numer-
ous small packets that were attached to the inside surface of the satellite, (1) The
packets were sealed with an adhesive wax that melted just below the equilibrium
temperature of the sphere in orbit, The bags, therefore, were not opened to start
sublimation and the buildup to higher pressurization until the sun's energy elevated
the temperature of the satellite. This occurred long after initial inflation and the

danger of rupture due to dynamic loads had passed.

Initial pressurization was designed to be higher than for Echo I. The theory
behind the use of the three-layer laminated material and this higher pressurization
was that the different moduli of elasticity of mylar and aluminum would result in the
aluminum stretching in a nonelastic fashion while the mylar sheet was still within its

elastic 1limit. (1)

Thus, after the pressurization escaped, the mylar would tend to
return to its original dimensions, placing the aluminum cemented to it under a com-
pressive load. This results in a material that behaves like a prestressed beam and

is quite rigid.

Echo II also supported two radio telemetry beacons mounted diametrically
opposite one another at the sphere's equator. These beacons served as a tracking
aid as well as a means of telemetering data on satellite temperature and pressure.
The pressure menitoring capability extended from a minimum of 10-5 mm to a

(17)

maximum of 0.5 mm of mercury, The temperature measurements extended from
minus 120  to plus 160° C. The beacon system included two battery packs, four solar

cell panels, and interconnecting cables to give a total weight of approximately 6



pounds. The carrier frequencies were at 136.020 and 136,170 MHz, and each carrier
was amplitude-modulated with three sinuscidal subcarriers bearing the telemetry
information. The antenna, supplied with each transmitter, was a quarter-wave
monopole made of spring wire. Upon satellite inflation, the antenna erected to a
position normal to the surface of the satellite. The effective radiated power of each
transmitter was greater than 34 milliwatts under continuous operation. The beacons

were designed to operate for 1 year, at which time a mercury cell cutoff circuit

terminated radiations.
3.4 GROUND TERMINALS

Characteristics of three of the terminals listed in Table 3-3 as participants in
Project Echo are provided in Table 3-7.{5)(10)(18)(19)(20) Holmdel and Goldstone
were the two major experimenters involved in Echo I testing, while the Stump Neck
terminal participated in Echo I tests and was a principal evaluator of communications
via Echo II. Major subsystems of the Holmdel and Stump Neck terminals are depicted

(10)

in Figures 3—3(5) and 3-4 , respectively.

The configuration of each of these three terminals reflects the considerable
concern that existed over the feasibility of accurately acquiring and tracking the
passive Echo spacecraft. None of the terminals relied on the satellite beacon for
tracking. Beacon tracking was performed by the NASA Minitrack network, and the data
contributed towards the generation of program track information by Goddard Space
Flight Center. Radar technigues were employed by the communications terminals to
give an active tracking capability. However, optical tracking was the preferred

method of tracking when the satellite was visible (i.e., at night).

Circular polarization was employed to eliminate the need for polarization
tracking. The direction of rotation (1, e., left- or right-hand circular) was selected
at each transmit and corresponding receive antenna to account for the direction

reversal that occurs upon reflection from the spacecraft.
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Table 3-7. Characteristics of Major Project Echo Ground Terminals

Terminal
TERMINAL FEATURE Holmdel Goldstone Stump Neck
Type Parabolic Transmit & Separate Parabolic Single Parabolic
Horn Receive Transmit & Receive Reflector
Aperture Size 60 ft. Diameter Xmit 85 ft. Diameter Xmit 60 ft. Diameter
& 20x20 ft, Receive & 85 ft, Diameter Rec,
Gai Receive 43,3 dB @ 2390 MHz 45.5 dB @ 960 MHz 49.7@ 23‘9‘8 MHz
- n Transmit [43.1 dB@ 960 MHz 52.5 dB @ 2330 MHz ————
at 1 (1) (1)
Receive 72%(1) 52% 44%
= np.
o (Fificlency o amit 0% 1 a2gfly | e 4
A
L4 Beamwidth Receive [1.2°@3 dB Pts, 0.9°@3 dB Pts, 0.5 @3dB Pts,
eamwictd Transmit {1.2°@ 3 dB Pts. 0,33°@3dB Pts, |  -----—-
Type Preamplifier Maser Uncooler Parametric Traveling Wave Amplifier
@ Amplifier
s
§ & |pandwiaen 7 MHz(2) 5 MHz(2) 200 MHz RF(3)
£
& & |Noise Temperature |45° K @7.5° EL, 300° K 550° K
| v P
= Type Amplifier Klystron Klystron Klystron{4)
=
g g Bandwidth 1.5 MHz No Data No Data
(]
& & |Amp. Power Out 10 KW 10 KW 10 KW
" Program track, optical Program track, optical | Program track or
a |Type track, manually con- track, or monopulse optical track
ho) trolled radar track radar autotrack
o
: Program track +0.2° Program track 10.15° | Program track :0.4°
= (Accuracy Optieal track :0.05° Optical track +0,1° Optical 10, 3°
Radar track #0.1° Radar track 10, 03" for
. receive & t0,1% xmit, ]
— % % G/T 26,5 dB/°K(1) 20.5 dB/K° 22 dB/°K
£ £ E|EIRP 112.5 agm{}) 122,5 dBM ---(4)
'g _é‘ Transmit Feed Left Hand Circular Right Hand Circular -
E ﬁ Receive Feed Left Hand Circular Right Hand Cireular Circular
'é g Radome None None None
28 |Type Facility Fixed Fixed Fixed

Notes: (1)

Derived value based on data available

(Z)Front end bandwidth, Predetection demodulator bandwidth was 6 kHz

‘3)Predetect10n demodulator bandwidth was 50 kHz

%)

Terminal did not normally transmit
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3.5 EXPERIMENTS

The premier objective of the Echo program was to evaluate the feasibility of
employing satellite reflectors for global communications, and most of the planned
experiments were directed towards that end. The second objective listed in Table 3-1
was accomplished through preflight statics tests, ballistic space tests, the TV system
on the booster that monitored the deployment of Echo II, optical observations of both
spheres over a period of time, and monitoring of reflected received signal levels
over a period of time. Received signal level data was obtained in the planned communi-—
cations tests as well as in independent radar tracking operations. References 21
through 24 provide examples of the type of information analyses completed to verify
that large lightweight structures of the Echo type can be successfully deployed and

maintained in orbit.

Accurate tracking of the Echo balloons was maintained throughout their lifetime.
This gave the basis for accomplishing the third objective in Tahle 3-1, as well as
allowing the balloons to serve as accurate position location measurement references
for remote geographic points. References 25 through 28 are examples of the types
of analyses and conclusions that have been made possible by the extensive data on the
Echo orbits,

The major communications tests performed on Project Echo and a summary of

their results are given in Table 3-8. (5)(8)(10)(22)(29)(30)

Items 1 through 4 in the
table were tests or analyses employed extensively on both Echo I and II, while the
remaining listed tests were conducted mainly with Echo II alone. Results of the first
three items, as well as optical data, indicated that Echo I was relatively smooth and
spherical during its pressurized lifetime but developed wrinkles and flat areas during
the first month in orbit, which tended to become more extensive and severe as time
passed. Similar data indicated that Echo II developed a wrinkled skin very quickly

after deployment and maintained its shape as a function of time,
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Table 3-8,

Communications Experiments

TYPE EXPERIMENT

NATURLE OF RESULTS OBTAINED

—

2

.

G.

Received Signal Level

Average 8cfatteri ng Cross
Section

N

Fading Characleristices

Voice Transmission

Facsimile Transmission

Coheront Bandwidth

Space Diverslty

Digital Data Transmission

Levels, in general, apreed with expectations verifying
effective balloon cross sectional areas and path loss.

Indications were that licho T was wi%n 1 dB of theoretical‘z)
during pressurized life of satellite,* dropped to about 3

dR down within first moenth in orbit and gradually decayed

to & dB dmwjovcr 3 years. Fcho Il was 1 dB down from
theoretical” ™~ shortly alter Inunch and held constant as o
function of time.

On keho 1, 10 to 90 pereent [ade r:lnp;c(/n wis 2 to 1 di3
during first month in orbit and gradually increased to 6 dB
lo 8 di over 3 years., lcho Il range was 11 Lo 13 dB and
held constant as a {unction of time, On both liche I after 3
years and Echo [I, a Rayleigh probability density function
and an amplitude specltrum indicating nearly atl power
fluetuntions occurred at frequencies below 3 or 4 He were
obscrved.

Received guality judged excellent on bolh Keho [ and §I for
voice. Music also excellent on Echo 1. Feho | employed
200-I1z to 3-kllz bascband and frequency deviation of £30

MIlz, Echo Il employed 30-112 to 15-kHz baseband and
frequency doeviation of ) 15 MIlz, Capability of reasonable
qualily oh up to 4 voice chunnels nlso demonstrated on licho 11,

Standard military machine that normally used 3-kllx voice
channel was prerecorded nnd played back al 4 times normal
speed to give 12-kHz baschand.  1000-11z tone was simultine-
ously prerecorded for speed eontrol and doppler correction,
Using 1 15-kA% Mrequency devialion, good quality with some
streaking and distortion due to signal fluciuating below
threshold observed.

Appearcd to be greater than 12 Mz but less than 70 MHz,
Indications were that freguency diversity heeame effective
at about 190-Mliz [requency spacing. Both:amplitude and
phase correlution nnnlyses apptied to lones at separate
frequencies to make Lhese determinations.,

Little diversity improvement observed for antenna spacings
al 2374 Tect,

Alternate oncs and zeros trunsmitted by M or carrier and
conventional detection.  Decisions on recceived signal
emplayed a matched filier (i.c., integrate and dump). Error
rates [or tll.'hnsmissig? at 1. 2 kbps rate typically ranged
between 10~ and 10 bits/bit,

Notes: (1)

(2.

Determined from analysis of received communications sipnals and radar returns.

For Echo 1, 729.64 squarc meter or 28,638 dib velative 1 square meter,  TFor Echo 11,

1329, 81 square meter or 31,23 dB,

(3
{4)

One to two weeks,

of time.

Difference botween value exceeded 10 pereent of time and viloe exceeded 90 percent
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In addition to the experiments listed in the table, several tests of perhaps some-~
what lesser importance were conducted employing primarily Echo 1. Voice trans-
mission evaluations were extended by utilizing single-sideband, narrow-band phase,
and amplitude-modulation techniques for comparison with frequency modulation, (5)
The performance did not equal that with FM, indicating that the coherent bandwidth of
the channel had not been exceeded in the tests; therefore, conventional theories for
comparing modulation techniques applied. Measured doppler shift was compared with
theory and found to be in good agreement. Performance of FM with feedback receivers
was evaluated and found to agree well with previous laboratory measurements and
theory. Performance of the ground terminal tracking systems was closely watched.
All performed well, and the potential of automatic tracking was demonstrated. In
addition, a television signal was transmitted and limited quality reception obtained,

using facilities developed for Project West Ford. (31)

Numerous notable demonstrations were also qonducted. (3)(30) Most of these
occurred during the early days of Echo I and tended to dramatize the potential of
this type of communications, Included were a tape-recorded voice message by
President Eisenhower during the first satellite pass on August 12, 1960; prerecorded
2-way messages by President Eisenhower and Senator L. B. Johnson on August 13,
1960; and the first 2-way live voice transfer between Mr, W. C. Jakes of Bell
Telephone Laboratories and Mr, P. Tardani of Jet Propulsion Labs also on August 13,
1960.

Finally, Echo II provided a first in international communications, when Russia
agreed to participate in a cooperative experiment with NASA and to supply NASA with

(ID(32M33} 1y tests were con-

tracking data during the early orbits after launch,
ducted in accordance with the Bilateral Space Agreement between the USSR (Academy
of Sciences) and the USA (NASA) reached at Geneva on June 8, 1962. The tracking

data consisted of photographs and optical observations that helped to determine that

the balloon had been successfully deployed and to establish initial orbital parameters.
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The communications experiments were performed between the Jodrell Bank
Radio Observatory of the University of Manchester, England, operating on NASA's
behalf and the Zimenki Observatory of the Gorki State University northeast of Moscow.
The Jodrell Bank facility provided a 250-foot diameter steerable antenna and a 1-kW
transmitter to radiate signals at a frequency of 164,2 MHz., The Zimenki facility
received both this signal and the 136-MHz satellite beacon, using a 49-foot diameter
antenna, Transmissions included unmodulated carrier, 400-Hz tone modulation,

Morse telegraphy, teletype, telephone and facsimile.

Theoretical link calculations showed that performance could only be marginal,
but the results obtained were even poorer than expected. This was attributed to
inaccurate pointing of the antenna at the transmitting site, refractive and reflective
effects on the signal at the low elevation angles and wide beamwidths used, and
polarization mismatches between the transmitting and receiving antennas. In spite
of this, 34 experiments were conducted between 21 February and 8 March 1964, and
the international cooperation displayed made the cntire operation a significant

diplomatic success.
3.6 OPERATIONAL RESULTS

Project Echo was an experimental program; therefore no operational traffic
was carried. Operation of the experimental ground stations was entirely satisfactory
as expected. The only difficulty of any significance was caused by occasional errors
in the prepass tracking predictions. These errors were of sufficient magnitude to
make ground terminal program tracking unsatisfactory. They were a result of the
manner in which the orbits of the large lightweight Echo structures were being
perturbed from pass-to-pass by solar pressure and atmospheric drag. The tracking
difficulties encountered could have been overcome by obtaining more extensive track-

ing data and updating computed orbital elements more often.

No unexpected operational difficulties of importance were encountered with

the Echo I balloon. At the end of a week of operation, a malfunction occurred in the



beacon battery supply such that the beacons transmitted only when a solar cell pack was
illuminated by the sun. However, the beacons were not designed for a long lifetime,
since their primary mission was to assist the tracking operations during the early

orbits of the satellite so that accurate initial orbital elements could be generated.

This mission was fulfilled.

_ The only anomalous operation that developed during operations with Echo II was
scintillation of the reflected received signal due to wrinkling of the satellite skin. This
was caused by the unexpected satellite spin that developed during the first orbit after
launch and lower than expected initial inflation pressure. The exact cause of these
unusual occurrences was not determined. The beacons on this spacecraft operated

for 1 year as planned,
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SECTION 4 - COURIER

4.1 PROGRAM DESCRIPTION

In September 1958, the U.S. Army Signal Research and Development Lab-
oratory (USASRL) submitted a technical proposal for a delayed repeater satellite
communication system to the Advanced Research and Development Agency of the
Defense Department. In October 1958, USASRL received approval to proceed with
Project Courier. The program was undertaken to demonstrate the feasibility and
operational capabilities of a store-and-forward (information storage for future

1)

retrieval) satellitc communications system with potential military application,

Two active delayed repeater satellites, Courier la and Ib, were launched
before this program was completed, as indicated in Table 4-1, (2) After Courier
Ia failed to reach orbit due to a missile malfunction, Courier b was successfully
injected into a low altitude eliptical orbit., Testing during the 17-day operational
lifetime of Courier Ib fulfilled the program objectives. The operational usefulness

of Courier Ib came to an end when it ceased to respond to attempts at "turn on,"

Table 4-1, Participating Spacecraft

Satellite Courier Ia Courier Ib

Manufacturer & Sponsor Philco Corp. & U.S. Army Signal Corp
Launch Date 8/18/60 10/4/60
Launch Vehicle Thor-Able-~Star
Apogee(Mi, ) No 755
d Perigee (Mi.) Orbit 600 o
lé b= Inclination Attained 28.3
c A Period (Min. ) 107
Status Spacecraft Satellite ceased
' lost due to to respond to
migsile failure turn on'' commands

on 10/21/60 leaving
VHF beacon as only
radiation




The two earth terminals empleoyed in Project Courier are listed in Table 4-2, (3)

Satellite launchinge were supplied by the U,S. Air Force,

Table 4-2. Participating Earth Terminals

Antenna Date

Location Sponsor Diameter (I't.) Installed
Fort Monmouth, New Jersey USASRDL 28 1960
Camp Salinas, Puerto Rico USASRDL 28 1960

The major contribution of Project Courier to satellite communications
technology was to demonstrate the technical feasibility of a delayed repeater high
capacity digital satellite communications system. However, the satellite's early
failure clearly demonstrated the need for additional care and effort in designing

and testing components and systems intended for operational satellite applications,
4.2 SYSTEM DESCRIPTION

Tests were conducted with Courier Ib on a loop-back or push-to-talk basis
by the two terminals indicated in Table 4-2. Both real time and store-and-forward
operation was possible, During store-and-forward operation, an earth terminal
could load traffic into the spacecraft's tape recorders at the same time it received

previously stored messages from the satellite,

The altitude and inclination of the satellite orbit made an average of five
workable orbits at the Fort Monmouth station and an average of seven at the Puerto
Rico station possible out of approximately 14 orbits per day. (3} The satellite was
in view of the ground station during each orbit for a maximum of 19 minutes at
Fort Monmouth and 22 minutes at Puerto Rico. ) Mutual visibilities as long as

15 minutes were available.
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Operating frequencies for the Courier satellites were as indicated in

Table 4-3, (2) The UHF communications frequencies were chosen for the wide band-

width and simplicity of equipment design provided in addition to the noise and

propagation advantages at these frequencies.

Table 4-3. Courier Frequencies (MHz)

&)

Communications TT&EC
Uplink Downlink Command Telemetry
1750 1800 to 1900%* 135 108%*
* Two transmitters, modulated with same information and operating about

20 MHz apart, utilized for frequency diversity.
** Separate acquisition beacon, disabled upon satellite "'turn on, ' operated at

same frequency.

The basic signal processing techniques utilized on Project Courier were as

indicated in Table 4-4, (2) 4) The modulated uplink signal was detected in the

satellite, The detected baseband was recorded in the satellite or retransmitted

in real time. During transmission over the downlink, the detected signal modulated
the satellite transmitter's radiated carrier.

general, superior to the downlink performance indicated in the table. Margins had

The uplink performance was, in

to be adequate to account for variations in range, rain losses, satellite antenna

gain as the aspect angle to the ground terminal changed, and other link parameters

that varied to a smaller extent.
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Table 4~-4., Signal Processing Employed

Multiple Access None

RT Modulation FM*

Ground Demodulator Estimated** threshold at about 10 dB C/N
Performance

Ground Terminal 16 dB for maximum range*** and 100 kHz
Receive Carrier-to- noise bandwidth

Noise

Ground Receive Margin 6 dB at maximum range

* Employed on both the up and down link
**  Estimate based on fact that conventional discriminators were employed
k% 3300 statute miles

4.3 SPACECRATFT

Spacecraft characteristics for the Courier satellites are displayed in
Table 4-5, (2) (3) (6) A plock diagram depicting the hasic electrical configuration
of the satellite is shown in Figure 4-1, (3) The considerable redundancy incorporated
reflected the concern over spacecraft reliability that existed at that time. The
design expectation was for a 1 year in orbit lifetime. A special acquisition
transmitter, separate from the telemetry transmitter, was supplied. While in
the acquistion mode, the two VHTF receivers were alternately activated to "'listen"
for ground terminal signals, on a part-time basis. The cycling of the receivers

was such that an active receiver was listening only about 10 percent of the time.



Tﬂble 4"50

Satellite Characteristics

Type UHF - Pair of slotted fin |VHF ~ 4 whip turnstile
antennas located 180° apart|for TT&C
on satellite equatorial
2 band, *
g Number One One
b= Beamwidth Essentially Omnidir- Essentially Omnidirectional
< ectional
Gain 0 dB 0 dB
Frequency Band UHF
Type Demodulating/remodulating with capability for real
time or delayed operation. ¥* ]
3 dB BW 550 kHz
Number One with considerable built in redundancy
o Type Front End Four receivers, each with a down conversion mixer
% 5 first stage. Discriminator outputs of receivers
gl = combined in baseband combiner.
,j"d § Front End Gain 100 dB IF following down conversion mixer in each receiver.
/| Sys, Noise Fig. 14 dB
Type 2 planar triodes, each modulated with the detected
N uplink signal and operating 20 MHz apart to supply
§ frequency diversity. Redundant pair of transmitters
i= available at ground command. o
Gain No data available
Power Out 33 dBm
EIRP-UHF Ant. 29 dBm***
ﬁ o Type Spin with no active correction capability
" %;: Capahility Unoriented relative to earth, Initially approximately
LN 90° spin axis aspect to sun.
g b Primary Solar array with 65 watts average output, *¥* B
o %g Supplement 2 nickel cadmium batteries - about 12 amp. hr,
~ P capacity per battery*¥¥*
5 [Comm. Power Needs | Approximately 200 watts
g |Size Spherical with 52 in. diameter
© Weight 500 1bs.
* Two receivers and a redundant transmitter connected to each slotted fin,

Transmitters on one fin operate at different frequency from those on other.
All receivers at same frequency.

* %
* okok

**x* At launch,

1 analog and 4 digital tape recorders allow delayed operation.
Transmitter to antenna losses are 4 dB including a diplexer and hybrid.
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When one of the receivers detected a ground terminal signal, it came on in full-time

operation and the remaining satellite systems could be activated on command.

T Mi M a i Coemmeond
Aperture 1 icrowove crowave icrawave funclions
d diplexer receivar | bosebond Commong | functions

Microwove 1 plus stondby combiner decoder
ontennos |_~—1
T Aperiure 2 Microwove £ | Microwove

diplever N | receiver 2
2 B alus slondby
Reol
Data time
sforage
devices
Pato
sloroge
devicas
Microwave
“d fransmitier |

nius standby

Microwove
b——fransinitier 2
phus standoy

VHF
receiver
VHF ontennag plus stendby
% VHF Acquisition
diplexar iransmitier
plus standby
Telemetry Telemetry
transmlter generator

plus standby plus stondby
Solar BaHwery P
ower .
powar power converter [——r——- Power 1o egquipmant
convariers supply

Figure 4-1. Satellite Electrical Subsystems

4.4 GROUND TERMINALS

The ground terminals employed at Fort Monmouth and Camp Salinas were
essentially identical. Major characteristics of these terminals are displayed in

Table 4-6, (1} (2) (3) Major subsystems are illustrated in the block diagram of
Figure 4-2, (3)



Table 4-6, Characteristics of Earth Terminals

Antenna

Type

Aperture Size
Receive Gain
Efficiency

Rec. Beamwidth

Parabolic Reflector
28 Ft. Diameter

41 dB

50%*

1.35 at 3 dB pts.

lation

Radome

Type Facility

None

Type Four receivers each with uncooled parametric
i Preamplifier amplifier front end. Two receivers operate in
n linear polarization diversity at each satellite
_g transmit frequency. **
¥ | Bandwidth 500 kHz¥**
& | Noise Temp. 640CK
£ Typc Amplifier Klystron
% &
£3 Bandwidth 4 MHz****
Ef_-;(% Amp, Pwr. Out 1 kW
ébﬂ Type Conical Scan Auto track
5| Accuracy 0.5% at maximum slewing rate of 15°%/second
0
M *
S G/1 13dB/ K
S S| EIRP 99 dBm*
'ég Transmit Feed Circular
-
&§ Receive [Feed Linear Diversity ReceptionT
|
ka
n
k=

Fixed because of antenna installationT ¥

* Derived value based on data available.

** Receivers operating on same {requency combined at RF.
Composite signals at separate receive frequencies combined at

baseband.

*¥* 100 and 200~-kHz bandwidths also selectable.

¥k RF bandwidth, Effective bandwidth of signal from modulator
was a maximum of about 200 kHz,

Crossed dipoles at 45° to horizontal and vertical employed.

Terminal included antenna, 3 semitrailers, and a2 maintenance

van plus power generators,




As the figure indicates, the system was primarily designed to handle teletype

traffic since digital messages are normally more compatible with store-and-forward

operation than analog messages.

The terminals included a record and playback

speed changing capability in their data storage system such that stored teletype

messages could be {ransferred to and from the satellite at a 55-kbps rate.

Figure 4-2,

!
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The choice of circular polarization for the transmit feed resulted in a 3-dB
uplink polarization loss since the satellite antenna's transmit and receive
polarization was linear. This loss was avoided on the downlink without resorting
to a polarization tracking system by employing crossed dipoles and dual receivers

at each downlink frequency to give polarization diversity reception.
4,5 EXPERIMENTS

Experiments conducted on Project Courier can be grouped into the three
major categories listed and defined in Table 4-7, 2) Each of these groups of tests

contributed to accomplishing the program objectives.

Table 4~7, Summary of Program Experiments

Type Description
1. Communications Evaluate link parameters and communications
Performance traffic handling capabilities of a delayed

repeater satellite,

2, Satellite Performance Determine capability and reliability of various
subsystems of complex signal processing
repeater.

3, Jamming Resistance Measure satellite and communications per-

formance under interference conditions on
VHTF or UHF uplinks to satellite.

The spacecraft performance tests monitored items such as satellite fape
recorder operation, temperature, spin axis attitude, spin rate, solar power supply,
and command system performance, {2) During the short operational lifetime of
Courier Ib the satellite performance was (in general) good and in agreement with
expectations. Spin rate was observed to decay at the rate of about 1 rpm per
month. Performance exceptions involved the tape record=rs and command system,

One of the five tape recorders became stuck at an endstop and further recording or



playback was impossible. Command system malfunctions resulted in an operational
effectivity of only about 95 to 97 percent. Malfunctions included failure to respond
to commands, improper command acknowledgements, response to improper access

codes, and in one case improper execution of the command sent,

Jamming resistance tests involved CW interference to the VHF link and both
CW and pulse interference with the UHF message link. (2) The system was found
to be readily susceptible to jamming of either the UHF or VHF links, as might
be expected since no antijamming features were incorporated. UHF link signal-to-
jamming ratios of 5 to 7 dB had to be maintained to preserve system operation in
the presence of CW jamming, With pulse jamming, the signal-to-jamming ratio

required appeared to be somewhat higher.

The communications performance tests described in Table 4-7 are defined
in Table 4-8. (2) The table also includes primary results obtained. A precise
evaluation of link parameters was not obtained, since spin axis attitude could be
determined only from surface temperature sensors and received signal level, and
spin rate was determined from the received signal level alone, As a result, highly
accurate real time satellite antenna gain data was not available. In both the record
and playback modes, delayed repeater operation required 5-second lags before
initiating signal transfers to allow tape recorders to reach operational speed. In
addition to the tests listed in Table 4-8, Courier Ib was employed in radar range
measurement experiments. (7) These experiments contributed the development of

techniques for employing ranging data to develop satellite tracking information,
4.6 OPERATIONAL RESULTS

Project Courier was an experimental program; therefore, no operational
traffic was carried. Satellite operational results during the 17-day lifetime of
Courier Ib were described in the discussion of experiments (Paragraph 4, 5).

Ground terminal tracking reliability and accuracy were quite good. Communications

equipment performance and reliability was easily adequate for the limited duration
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Table 4=-8, Communications Performance Experiments

Type Experiment

Nature of Results Obtained

1, Received Signal

VHF and UHF uplink and downlink levels, in general,

Level appeared to agree with expectations with level variations
for most part due to Faraday rotation, satellite spin
and changes in spin axis aspect to earth, *

2. Teletype Delayed repeater and real time performance was the
same, Average corrected error rate* was
3.33 x 10~4 bits per bit.

3. Voice Delayed repeater and real time performance appeared
the same, Single channel voice subjectively evaluated
to be of commercial quality. Estimated that four or
more multiplexed voice could have reasonably been
accommodated.

4, Facsimile Real time performance subjectively evaluated as
excellent, Some synchronization difficulties encountered
in delayed repeater operation due inadequate speced
stability of tape recorders, *¥**

* Exact real time effects of spin rate and spin axis aspect were difficult to
ascertain since satellite did not incorporate sensors for their measurement.
However, fades did not correlate with atmospheric disturbances that affect
more conventional types of long distance radio propagation such as HF,

** Nulls in pattern from two-element satellite antenna caused error bursts
twice per satellite spin cycle due to signal level dropping below threshold.
Corrected error counts eliminated these bursts from consideration.

* ok %

Synchronization difficulties could be overcome by multiplexing a separate
synchronization signal with facsimile signal. However, this resulted in
noticeable intermodulation. '

4-11




experiment conducted. However, reliabilities of the klystron power amplifiers and
low noise parametric amplifier receiver front ends employed were not adequate for

an operational system,

The major operational difficulty encountered with the Courier system occurred

on October 21, 1960, when the satellite ceased to respond to ground terminal

"turn on'' commands. This left the satellite in an acquisition mode with the UHF
communications system and telemetry transmitter deactivated, and only the VHF
beacon transmitter remained active. The exact cause of failure was never determined.
Erratic command system in-orbit performance on Courier Ib and subsequent life
testing of a duplicate satellite model pointed toward a failure of command system
circuitry. The circuitry for cycling the VHF acquisition receivers "on" and "off"

(i.e., battery saver circuit) was hypothesized as the most likely point of failure, @
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SECTION 5 - WEST FORD

5.1 PROGRAM DESCRIPTION

Project West Ford (earlier, Project Needles) was a scientific and technical

investigation, sponsored and supported by the U.8. Air Force, into the feasibility of

using an orbital array of dipoles as passive reflectors in a global communication

system., The communications concept investigated under Project West Ford could,

in principle, provide the following:

1.

Immediately accessible, continuous, worldwide communication coverage
linking widely separated transmitting and receiving terminals without

intermediate relay stations.

High dependability by virtue of very low vulnerahility to disruption by

natural or manmade influences.

Capability of resisting electronic jamming and compatibility with techniques

for providing cryptographic security.

Reliability and ease of maintenance and repair, since the space subsystem
is passive and the active electronic equipment is on earth, and since relay
stations in remote and possibly politically unstable locations are not

reqguired.

Ability to carry simultaneously a large number of circuits between
transmitters and receivers located in widely separated geographical

regions.

Relative ease of operation, since ground antennas are not required to

track the satellite relay medium at high rates over large angles.

Relative economy of establishment, gince only two successful rocket
launches could establish the entire satellite portion of a system to provide

the performance indicated.
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The principal advantage of the West Ford concept is its great inherent resistance
to any damage (natural or other) that could significantly reduce its capability, so

worldwide communications could be maintained under any foreseeable circumstances.

The question of possible interference to radio astronomy, optical astronomy,
and space travel was under discussion from the outset of Project West Ford.
Because of this concern, an ad hoc committee of the National Academy of Sciences
was established which subsequently recommended that the project be declassified
and disclosed to the scientific community at large. Opposition to the West Ford
project was especially concerned with leaving material that might prove to be consider-

ably harmful in the above-mentioned respects dispersed in space.

Late in September 1961, a special panel of the President's Science Advisory
Committee concluded that ""the United States can proceed with the West Ford commun-
ications experiment without danger to science.' As a result, a satellite carrying the
West Ford dipole dispenser package was launched on October 21, 1961. The attempt
failed because of a mechanical malfunction in the dispenser. The dipoles did not
disperse: fragments of the package were observed in orbit by a VHF radar but they

could serve no useful communications function.

A vear and a half elapsed before a second attempt was made on May 10, 1963.
The dipole dispenser was carried into orbit as a piggyback payload on a large parent
satellite, and the parent satellite was placed in an approximately polar orbit of about
3700-km altitude. The inclination and altitude were selected to ensure that the dipole
belt lifetime would be limited by solar radiation pressure. A radio command signal
was employed to release the dipole dispenser, However, due to 2 30-minute ejection
delay imposed by the mission of the parent vehicle, the dipole dispenser was heated
unevenly by the sun. This caused imperfect dispensing which resulted in somewhat
less than half the dipoles being dispensed individually. Nevertheless, a sufficient
number of dipoles were successfully dispensed into orbit to allow experimental

investigation,



The subsequent West Ford space experiment demonstrated that the orbiting

dipole technique can provide reliable radio communication over large distances.

More specifically, this program demonstrated that:

1.

Large quantities of fine microwave dipoles can be fabricated, compactly

packaged, launched into orhit about the earth, and dispensed.

large quantities of fine dipoles can be made to form a compact belt
around the earth of predictable dimensions and within a predictable time

period,

The orbital perturbations caused by solar radiation pressure and the

earth's gravitational field are essentially as predicted by theories developed
at Lincoln Laboratory. The spreading of a dipole belt similar to that
deployed, over 7 months' time, is no more than about 200 km ina radial
direction from the earth and about 60 km in a direction normal to the

orbit plane.

Solar radiation pressure will limit the lifetime of a &ipole belt similar to that

deployed to about 3 to 5 years,

Propagation effects of the dipole scatter medium are as predicted: a
multipath time delay spread of about 100 microseconds and a doppler
frequency smear of 1 to 2 kHz were obaerved several months after

dispensing.

The various modulation-demodulation techniques operate with a dipole
belt at close to their predicted performance; communication rates of
several tens of thousands of bits per second were achieved soon after

dispensing.

The interference of a dipole belt similar to that deployed, with radio

astronomy measurements, is negligible as might be theoretically predicted,



5.2 SYSTEM DESCRIPTION

The major experiments performed using the dipole belt were conducted with
sites in Massachusetts and California operating as monostatic radars, as a bistatic
west-to—east radar, and for west-to-east coﬁmmunications. The eastern site was
more heavily instrumented as a receiving station and the western site more as a
transmitting station. Propagation measurements and communications experiments
including high-speed data, teletype, and voice were performed. Belt-scattering
cross—-section and dimension measurements were made by both monostatic and
bistatic radar experiments. The results of these experiments are discussed in

Paragraph 5. 5.

The choice of frequency range for Project West Ford was a compromise among
many factors. In the upper UHF and SHF region, atmospheric noise is negligible.
Galactic noise is not of great concern at frequencies above about 1000 MHz, nor is
the influence of the ionosphere, in either a quiet or disturbed state, At frequencies
of some 3000 MHz and higher, the noise contributed by atmospheric attenuation is
noticeable in sensitive receivers, and precipitation-induced attenuation begins to be

important along long slant paths at frequencies above 6000 MHz.

The use of lower frequencies will yield higher values of radiowave cross-section
per unit mass for a given dipole thickness; at very low frequencies, however, the
dipole thickness must be increased to preserve its shape and the greater mass would
increase any possible spacecraft collision hazard. In addition, there are greater
numbers of more powerful radio equipments operating at the lower frequencies.
Signals scattered from a low frequency belt by these powerful equipments may cause

interference,

Consideration of these factors led to the choice of a band of frequencies near
8000 MHz for a test of the orbital scatter technique. The operating frequencies

employed in Project West Ford are given in Table 5-1.
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Table 5-1. Project West Ford Frequencies

Millstone Camp Parks
Radar Communications Radar Communications
Transmit
Frequency 7750 7750 8350 8350
(MH z)
Receive
Frequency 7750 8850 8350 7750
{MHz)

The experimental program for determining the properties of the dipole belt as
a communications medium had two major goals. The first of these was the measure-
ment of the propagation characteristics of the belt in sufficient detail to permit the
design of possible future communications systems. The second goal was the achieve-
ment of digital data transmission at high rates consistent with the density of the dipoles
in orbit. The fact that these two goals were to be achieved at the same point in time

required the use of two receivers.

The receiver employed for measuring the propagation characteristics of the
dipole belt was essentially of the RAKE-type and is shown in the block diagram of
Figure 5-1. The tap unit (tapped delay line) outputs are used to form real-time
displays of multipath envelope and doppler spectra and to derive error signals for
irequency and delay tracking and for gain control, The communication receiver is
essentially of the correlation type using quadrature, full wave, square law detection.

The block diagram for this receiver is shown in Figure 5-2,
5.3 SPACECRAFT

Early in May 1963 a package containing 4. 8 x 10‘8 copper dipoles, each
0.00178 em in diameter and 1. 78 cm in length, was placed into a nearly cirecular,
nearly polar orbit at a mean altitude of 3650 km. A radioc command signal from the
ground initiated the release of the dipoles from the package. At first the dipoles
formed a rather compact cloud which, due to differential linear velocity increments

imparted to each dipole, gradually spread around the orbit, After several months,
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the dipole distribution assumed an approximately toroidal configuration with a circum-
ference of 63, 000 km and cross-sgection that varied along the orbit, with a mean

width of about 15 km and a mean depth (in the orbital plane) of about 30 km. In this
condition each dipole was separated from its nearest neighbor by an average distance
of about 400 m. This tenuous distribution of orbital dipoles is known a8 the Project

West Ford Dipole Belt.

The above description of the dipﬁle belt suggests that it may be considered as
a large number of approximately coorbital passive satellite reflectors, Each passive
reflector spacecraft takes the form of a short-circuited dipole half-wave resonant at
a frequency of 8000 MHz. The half-wave dipole was selected as the elemental reflect-
or because it achieves a large gain in scattering cross-section per unit mass (due to
resonance effects). In addition, the scattering from a large number of randomly
oriented dipoles is essentially nondirectional, Other passive reflectors which also
achieve large gain per unit mass are available (e.g., a flat circular plate), but most

are extremely directional, a severe limitation for use in a system of worldwide coverage

As a consequence of the concern that the dipole belt might result in interference
to other scientific endeavors, limiting the lifetime of the belt became an important
goal of the West Ford program. As a result of extensive studies on the orbital
properties of the dipole belt, it was determined that the major iﬁﬂuence on the perigee
height would be solar radiation pressure. The effect of the solar radiation pressure
" would be to drive down the perigee height until the orbit pierced the dense portions
of the earth's atmosphere where air drag would exert an additional force to drive

down the perigee height still further until the orbit intersected the earth's surface.

From an extrapolation of the time behavior of the physical cross-section of the
actual belt, it was concluded that 25 percent of the individually orbiting dipoles would
cease to orbit after about 2-1/2 years, 50 percent after 3 years, and 100 percent after
5 years. Thus it was expected that the orbits of all separated dipoles would decay
by early 1968,



5.4 GROUND STATIONS

Two ground stations were constructed, one in Massachusetts (at Millstone Hill
in West Ford) and one in California (at Camp Parks in Pleasanton) to use the dipole
belt and to measure its characteristics. The ground stations can transmit and
receive CW X-band communications signals simultaneously. In addition, each station
can be changed within minutes to a radar capable of tracking and measuring the
characteristics of the dipole belt and other satellites. The characteristics of the

ground stations are presented in Table 5-2.
5.5 EXPERIMENTS

Two broad investigative programs were established for determining the
feasibility of using the orbital dipole belt as a medium for global communications.
The first was a measurements program for estimating the belt orbit parameters
over an extended period of time, studying dispersion of the belt with time, deter-
mining the variation of dipole density along the orbit with time, and estimating the
total number of dipoles. The second program, determining the properties of the
dipole belt as a communications medium, had two major goals: the first was the
measurement of the propagation characteristics of the belt; the second goal was
the achievement of digital data transmission at high rates consistent with the density

of the dipoles in orbit.

Physical measurements of the dipole belt were obtained by three distinct
approaches. The first approach involved monostatic pulse radar operations to
measure range, angles, and scattering cross-section. The second approach
involved direct measurement of path loss for bistatic CW transmissions from one
side to the other via belt scattering. The third approach involved inference concern-

ing belt dimensions which may be made from bistatic measurements of doppler spread.



Table 5-2. Earth Terminal Characteristics

Terminal Terminal
Feature Millstone Camp Parks
< Type Parabolic Reflection Parabolic Reflection
g Aperture Size 60' dia. 60" dia.
~
=
- Receive Gain 60 dB 60 dB
Efficiency 40%* 45%*
Receive -
Beamwidth 0.15° at 3 dB Pts, 0.15° at 3 dB Pts.
o 8 Type Maser Paramp
[~
'g % Preamplifier
B,
é @ Beamwidth 30 kHz No Data
Noise Temp. 60°K 2000 K
2 g
E g Type Amplifier Klystron Klystron
)]
3 & Bandwidth 30 MHz 30 MHz/30 MHz
-
Amplifier Power
Cut 20 kW 20 KkW/40kW
..kd:) Type Computer Predicted Computer Predicted
B0
o
Eﬁ & Accuracy 0.01° 0,01°
4o
&E Q
2% g G/T 42dB/°K* 37dB/°K*
Q
2l EIRP 132 dBm* 133 dBm *
1
E 'S g1 Transmit Feed Circular Circular
[
A Receive Feed Circular Circular
& Radome None None
= g
% 2 Type Facility Fixed Terminal Fixed Terminal
A

*Derived value based on available data.




Measurements of the orbit parameters verified the important predictions about
orbital vehavior, as, for example, the smoothing of the distribution of the dipoles around
the orbit from the initial high-peaked cluster at the dispenser. In measuring orbital
parameters, rms deviations normal to the orbital plane averaging 7.5 km and rms
deviations in geocentric radius averaging 9.5 km were observed. The average nodal
period during the first 720 revolutions (the first 80 days of belt life) was found to be
166. 455 minutes. From this nodal period the average semimajor axis during this

interval was computed to be 1,57 earth radii.

All three physical measurement approaches were employed in determining belt
dimensions. Typical results of these measurements are summarized in Figure 5-3.
In this figure, perigee and semi-latus-rectum points are marked and each point on the
chart indicates the data sources, the 3-dB in-plane dimension and, except for the
inferences from doppler measurements, the 3-dB out-of-plane dimension. Experimental
estimates of the number of dipoles in orbit indicated that between 16 and 39 percent of
the ejected dipoles were properly dispensed, It also appeared that occasionally more
than one center of density developed, so that two closely spaced dipole belts were

present. This situation is depicted in Figure 5-4.

Measurement of the propagation characteristics of the belt was one of the goals
of the second experimental program, The dipole belt provided a channel in which sig-
nals were communicated from one point to another by scattering from a large number
of dipoles in a volume of space defined by the intersection of two antenna beam patterns
with the belt. Each dipole behaves like an independent scatterer, and consequently
the received signal at any given time is the sum of the signals scattered by a large
number of dipoles. The fact that the dipole scatters are not concentrated at a single
point influences the performance of the system in detail. Specification of the received
signal-to-noise ratio is not sufficient to characterize a spread channel such as the
orbital dipole belt, The minimum additional information that is required to give an
adequate description of the communications performance is knowledge of two

parameters — multipath spread (L) and doppler spread {B) - which are measures of
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the channel spreading in the time and frequency domains, respectively. If the time
and frequency behavior of a dispersive medium is sufficiently well-behaved, the two
parameters B and L are an adequate description for the purpose of signal design.

A more complete description of the dipole belt is furnished by the so—called scattering
function of the medium. This is a function o of the two variables, time T and
frequency £ , and designates the scattering cross-section of the medium at propaga-
tion delay 7 and doppler shift f . The scattering function of a dispersive channel,
together with the spectrum of the additive noise component, constitutes a model of the
channel that is sufficiently detailed to allow synthesis of optimum signals and detect-

ions and to permit comparative performance of signaling schemes.

The multipath and doppler spreads and path losses as measured by these
techniques are summarized in Table 5-3. The strongest overall conclusion of the

propagation experiment is that the scattering function is generally well-behaved,

Table 5-3. West Ford Dipole Belt: Channel Characterization

Date of Doppler T \ Path TLoss Angle re

Experiment* Spread B BXL (dB) Perigee
(eps) (deg)

May 20 630 .031 203 138
May 29 680 . 034 207 115
June 19 1600 . 080 209 100
July 12 1800 . 090 212 82
Sept. 24 2300 11 215 77
Nov. 13 1200 . 060 221 69
Nov 8 360 . 048 221 27
Dec. 5 1070 . 054 222 2

*Date of ejection,
L =50 sec (3~-db width)



The second objective in the study of the dipole belt as a communications medium
was the achievement of actual communication in the absence of detailed knowledge of
the scattering function, Thus, the purposes of the communications experiment were .
the transmission of digital data, the measurement of the performance of the system,
and the comparison of these results with theory. The basic communications technique
employed was binary frequency shift keying (FSK) with quadrature, full-wave, square-
law detection as indicated in Paragraph 5.2. In order to cope with intersymbol inter-
ference due to the dispersive nature of the channel, successive transmissions used
different frequency pairs and were detected in separate receivers operating in parallel.
Two message sources were available to the transmitter: a fixed word repetition and a
standard 60-wpm teletype. In addition, a digitized PCM system was constructed to pro-

vide voice communication in the early stages of the experiment.

On May 14 and 15, speech was transmitted using the PCM system. The received
speech was intelligible and its general quality varied as the PR/N0 ratio fluctuated
about a mean of about 53 dB. Between May 14 and June 18, eight communications
experiments were performed. This covered the period of time from shortly
after initial dispensing to roughly closure time. During all the experiments, theretore,
the belt was incomplete and in each run that portion of the belt spanning the central
densest spot was employed. The experimental results were generally in fairly good
agreement with the theory. For the most part, the theory overbounded the actual error
probability at most by a factor of 2. In summary, the performance of the data comm-
unications system was found to be in substantial agreement with a theory which
assumed the use of an optimum receiver. This is consistent with the above result
that the scattering function was adequately described by the two parameters B and L,

since the signals were designed under that assumption.

5.6 OPERATIONAL RESULTS

No operational traffic was carried by this experimental system. The operation-
al reliability of the space subsystem was quite high due to its passive nature,

Finally, the operational performance of the earth terminals employed in the experi-

ments was good, as expected.
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SECTION 6 - TELSTAR

6.1 PROGRAM DESCRIPTION

The Telstar program was conceived by Bell Telephone Laboratories for the
primary purpose of demonstrating the feasibility of employing orbiting satellites

for commercial communication purposes. Specifc objectives were ag indicated in

Table 6-1, 123

Table 6-1. Telstar Program Objectives

Number Description
1 Demonstrate broadband transmission through communication
satellites. ‘
2 Test operational communications satellite reliabilities.
3 Obtain operational experience with satellite ground terminals,
4 Increase kmowledge of satellite tracking techniques.
5 Provide secientific measurements of radiation in space.

Two active spacecraft, Telstar I and Telstar II, were successfully launched
into medium altitude elliptical orbits during the course of the program as indicated
by Table 6-2. (1(2) Numerous communication demonstrations and detailed
experiments were successfully conducted with Telstar I during its 7-month lifetime
and considerable data on radiation in the inner Van Allen belt obtained. Before
Telstar I finally failed from higher than expected radiation (which had resulted from
the high altitude nuclear tests), an initial malfunction of the command circuit was
successfully diagnosed from the ground and the satellite was commanded back "on."

This ground diagnosis represented a first in satellite communications. Program
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objectives were for the most part met in the Telstar I experiments, Telstar II,

launched after the failure of Telstar I, extended the previous experiments and

demonstrations.
Table 6-2. Participating Spacecraft
Satellite " Telstar I Telstar II
Manufacturer & Sponsor Bell Labs and AT&T
Launch Date 7/10/62 5/7/63
Launch Vehicle Delta
Apogee (Mi.) A 3514 6713
E o Perigee (Mi. )} 592 : 604 ]
2 8| Inclination 44.8 42.7
© Period (Min.) 158 225
Stﬁtus Failed 2/63 due to Transmitted
radiation damage to until
command decoders. 6/65

Major earth terminals participating in the program are shown in

-7

Table 6-3. (1) (2) (=7 Satellite launchings and the collection of tracking and telemetry
data through a worldwide network of Minitrack stations were provided by the National

Aeronautics and Space Administration (NASA),

Probably the most important contribution of Project Telstar, to satellite
communications technology, was to publicize, through numerous television
demonstrations, that orbiting satellites were feasible for use in commercial
communication systems, From a purely technical viewpoint, one of the most
important achievements was to confirm (in basic agreement with Echo I experience)
that standard transmission parameters could be employed to predict performance with

no concern about multipath fading for frequencies approaching 4 to 6 GHz and
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ground antenna elevation angles greater than a few degrees, A second technical
achievement of major importance was to demonstrate further that acquiring and
tracking a moving satellite was not an overly demanding assignment for a narrow-

beam communications antenna equipped with an autotrack system.

Table 6-3. Participating Earth Terminals

Antenna Diam-~ Date of
Location Sponsor eter (Ft.) Installation
1. Andover, Maine ATE&T 67.7 1962
2. Holmdel, N, J.~ AT&T 20 ft, x 20 ft. 1962
3. Pleumeur Bodou, French Nat'l, Center 67.7 | 1962
France for Telecommunications
Studies (CNET)
4, Goonhilly Downs, British General Post 85 1962
England Office
5. Fucino, Italy Telespazio 30 1962
6. Raisting, Deutsch Bundespost 30/82 1963/1964
Germany

*Existing terminal with receiver modified for use with Telstar. Terminal employed
a pyramidal horn reflector.

6.2 SYSTEM DESCRIPTION

The Andover terminal was the prineipal terminal invelved in the experiments
performed, with many of them being conducted on a loop-back basis. Major
demonstrations were performed over a link between Andover and terminals in

Europe or at Holmdel.

The satellite orbits, described in Table 6-2, were in agreement with plans

to provide the maximum realizable visibility per day and per pass while employing




a Delta rocket launched from Cape Kennedy. The higher apogee given to Telstar II
was to reduce the amount of time spent in the most intense regions of the radiation

environment, thereby minimizing damage to radiation sensitive components,

Operating frequencies in the Telstar program were as displayed in Table 6-4, (8)
The communication frequencies selected were hased on considerations of propagation,
link noise, bandwidth, hardware available, and the feasibility of frequency sharing
hetween commercial satellite communications and existing terrestrial services. (3)
The bands selected share spectrum occupancy with common carrier line-of-site
radio relay systems. The lower frequency band was selected for the downlink

because of the reduced effects of precipitation and atmospheric absorption.

Table 6-4. Telstar Frequencies Employed (MHz)

Communications TT&C
Uplink Downlink Beacon Command Telemetry Beacon
6389, 58 4169. 72 4079, 72 122, 9 136, 05 Telemetry
Carrier Used

Basic signal processing techniques utilized in the Telstar system were as

8-
(8-11) Power control for multiple access was greatly improved

indicated in Table 6-5.
at Andover by employing computer-derived slant range signals to vary the power
amplifier output to compensate for changes in the range to the satellite, Power
balancing was accomplished manually by coordinating between terminals, Margins
provided had to account for variations in satellite antenna gain as a function of
satellite aspect angle to the terminal and rain losses as well as various miscel-

laneous losses.
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Table 6-5. Signal Processing Employed

Multiple Access Frequency division for up to two carriers to support duplex

operation
RF Modulation M
Demodulator Conventional Diseriminator - Threshold at about 10 dB C/N
Performance FMFB Receiver - Threshold at about 5 dB C/N
Andover Receive 13.6 dB ¥ for maximum slant range, ** 7.5° antenna
Carrier-to-Noise elevation angle, 1 satellite access, and 25-MHz noise
(C/N) bandwidth
Andover Receiver Conventional Discriminator - 3.6 dB
Margin FMFB Receiver -~ 8,6 dB

*Includes 0. 4-dB radome loss,
** Approximately 5, 700 mi.

6.3 SPACECRAFT

Satellite characteristics fbr Telstar I and II are displayed in Table 6-6. (12-13)

The communications repeater in both satellites was as illustrated in Figure 6-1. The
basic repeater design reflects the desire to employ established technology to ensure
reliability. Most of the repeater is in broad principle similar to equipment used
earlier in land-based microwave systems. Storage batteries and a capability to
command equipment "on' and "off" allowed utilizing a solar array too small to meet
real-time power demands but within weight limitations. Spin stabilizing relative to
the sun reduced temperature equalization and solar array illumination problems,

However, it made the selection of an essentially omnidirectional antenna necessary.
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Table 6-6. Telstar I and II Characteristics

C Band }ﬂth separa’.te 1:nulti- VHF quadrafiler
Type port xmit. & rec. girding 8/C Helix for TT&C
equator
)
g Number One One
- E tially Omni-
& Beamwidth About 129 centered on 8/C E-ssen. ally Omni
equator directional
Gain 0 dB 0 dB
Frequency Band C Band
Type I¥ translating with AGC of IF stage
Bandwidth 50 MHz at 1-dB points
Number One
., | Type Front End Down Conversion Mixer
{
@ | 2 | Front End Gain 7-dB conversion loss into 87 dB ** IF
(1]
‘?'; é Sys. Noise Fig. Overall - 12.5 dB, 20 MHz centered on carrier -
& 16.5+2 dB
o
. | Type Single 6-watt TWT
U
-*é Gain 37.5 dB as operated
" | power Out 3.5 watt as operated
EIRP - C Band Ant. 33 dBm for 1 carrier
]
E Type Spin with magnetic torquing coil
:E g Capability Unoriented relative to earth
@ he Normal 90° spin axis aspect to sun
% b § Primary Solar array with 14 watts*** average output
f._", § é Supplement**** Nickel cadmium batteries giving about 35 watts ™"
% Comm,. Power Needs 19 watts maximum including beacon
E Size Spherical with 34.5 in, diameter
Weight 175 Ibas
*  Pattern reasonably uniform with smooth dropoff to 6 dB
down over * 60° from spacecraft {S/C) equator. Deep nulls
beyond this,
**  Nominal gain varied by AGC.
*k% At launch,
¢ ek ok

Furnishes power during peak loads and eclipses.




6.4 GROUND TERMINALS

Primary earth terminals participating in Project Telstar were listed in Table
6-3. Major characteristics of the predominant participating terminals are described

in Table 6-7, (4™ (17-26)

Tor communication purposes, circular polarization,
corresponding to that of the satellite, was employed at all terminals. This choice
avoids the difficulties that Faraday rotation in the ionosphere could present, All
of the terminal designs reflect an intense prevailing interest in reducing receive

system noise to the very minimum and accurately tracking a moving satellite,

The Andover terminal included three separate tracking antennas with their
individual associated autotrack systems in addition to a capability for computer-
derived programmed tracking. The autotracking systems were all, broadly
speaking, of the monopulse type. Major subsystems of the Andover terminal are

shown in the block diagram of Figure 6-2.

SATCLLITE

45T . TIMC

PRECISION
TRACKER

‘l

ANTENNA
COMPUTER =9 CONTROL
SYSTEM

4079.TEMC 4169.72MC
4123MC 126.05MC
COMMAND COMMAND ALK I\ COMMUNICATIONS
TRANSMITTER TRACKER e RECEIVER
COMMUNICATION
TELEMETRY TAPE TRANSMITTER
RECEIVER 369,58 MC

Figure 6-2. Major Subsystems of the Andover Terminal



Table 6-7. Characteristics of Major Earth Terminals
TERMINAL
TERMINAL
FEATURE ANDOVER* HOLMDEL GOONHILLY DOWNS
Type Conical Horn Reflector Pyramidal Horn Reflector Parabolic Reflector
« | Aperture Size 67.7 ft. Dia. 20 ft. x 20 fr. 85—ft. Dia
zZ e R —
E Receive Gain 58 dB 48 dB 55.6 dB
F_ ———————————————————————————————— | —— e r— —— — — —
E Efficiency 70— 75% 70 — 75% Approx, 30%
[ Rec. Beamwidth | 0.23° @ 3 dB Pts, 0.78° @ 3 dB Pts. 0.2°@ 3 dB Pts.
g = | Type Preamplifier Traveling Wave Ruby Maser | Maser Traveling Wave Maser
- wrreMe———— e e e E———— e e —— e
W £ | Bandwidth 25 MHz @ 3dB Pts. 20MHz @ 1dB Pts.. 25 MHz @ 3 dB Pts.
52 [Noie Tome. T 2 e A okeodEl | sokeseel |
o Noise Temp. 32°K** @ 90® EI. 179K @ g0° EI 56YK @ 90" E).
% = | Type Amplifier Traveling Wave Tube Traveling Wave Tube
W o — o o ——n e — — e e ——— e ]
% E5 | Bandwidth 32MHz @ 1 dB Pts. No Transmissions Employed 100 MHz @ 3 dB Pts.
g Gy e N O S S
T v | Amp. Pwr, Dut 2 kw 5 kW
a | Type Autotrack by Command Predicted Look Angles plus Programming Tracking
e Tracker, Precision Tracker, | Manual Correction of Errors
(55 or Vernier Tracker by Detected on Separate 18—ft.
-y Separate Antenna. Dish Tracker,
rif————————_——_——— e ] o — — - ]
F | Accuracy Command Track £1° As good as +0,05° can be Approximately 0.19
Precision Track +.01° obtained,
Vernier Track +.005°
&
g 40.7 dB/°K 36 dB/°K 38 dB/°K
4= -4 4l ]
5 [
32| EIRP 123dBm None Approx. 123 d8m
i
o
=
= . .
~ | Transmit Feed Circular Circular Circular
N
T
5 Receive Feed Circular Circular Circular
2
2
© | Radome 210—1t. Diameter None None
z Pressurized to
3 0.175 Ib/in.2
ﬁ _________________________________________
% Type Facility Fixed Terminal Fixed Terminal Fixed Terminal

*The terminal at Pleurneur Bodou has essentially the same characteristics.
**The noise temperature at a 7.5° elevation angle is about 50°K.
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The Holmdel terminal, originally built for Project Echo, included a glint
telescope to determine the orientation of the satellite’'s spin axis and the spin rate.
Determinations were made by observing the flashes of sunlight reflected from the

three mirrors mounted on the satellite's surface.
6.5 EXPERIMENTS

The experiments conducted on the Telstar project can be grouped into four
major categories as displayed and defined in Table 6-8. The radiation experiments,
described in the table, contributed considerable data towards characterizing the
particles within the inner and outer Van Allen belts. Additionally, valuable
knowledge of the effects of radiation upon solid-state devices (i.e., upon solar cells
and transistors) was gained. The most spectacular radiation experiment result,
however, was the discovery, from the data on Telstar I, that high altitude nuclear
testing dramatically intensified the radiation environment in the Van Allen

belts. (2127)

The space experiments, defined in Table 6-8, monitored such items as
attitude of the spacecraft spin axis in inertial space, spin rate, temperatures at
the spacecraft surface and of critical internal components, satellite RF power
levels, and variations in spacecraft circuitry and components. Changes in spin
axis attitude, due to the residual magnetic moment of the spacecraft, were
recorded. Spin rate decay, resulting from eddy currents generated in the satellite
as it rotates in the earth's magnetic field, was observed, The decay was greater
on Telstar I because of its lower orbit. Skin temperatures varied between about

-15°F and 40°F.
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Table 6-8, Summary of Program Activities

Type Program
Activity . Ohjective Nature of Activity
Satisfied *
1. Radiation 5 Measure electron and proton spectrums
Experiments and spatial distributions as a function of

time. Evaluate radiation damage to solid
state devices as a function of shielding.

2, Space 2 Measure spacecraft performance under
Experiments launch and space stresses,

3. Communication 1 Display broadband transmissions by
Demonstrations satellite comparable to conventional

commercial transmissions.

4, Communication 1 Evaluate technical performance of broad-

Experiments band satellite communications,
* Program objectives are numbered and defined in Table 6-1,

** Radiation spectrums characterize the number of particles per unit volume
as a function of particle energy level.

Internal temperatures varied between about 60°F and 80°F. The radiated RF

power was observed to remain constant as a function of time. The only significant
changes observed in circuitry or components were a degradation of solar cell output
and the failure of several transistors within the command decoder of Telstar I.

Both of these changes were a result of the radiation encountered.

The communication demonstrations, mentioned in Table 6-8, included a
variety of tests whose descriptions and results are indicated in Table 6-9. (2930

More than 400 demonstrations were conducted in the Telstar program. (31)
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Table 6-9., Telstar I and I Communication Demonstrations

Type Demonstration Nature of Results Obtained
1. One-way monochrome Highly successful. Some loss of picture definition
TV due to baseband bandwidth limitations* in ground
terminals. At maximum range, weighted signal~
to-noise somewhat less than for normal Bell
System commercial service. Transients from
camera switching at originating studios caused
noise bursts in received signals.
2, One~-way color TV** With no audio transmitted™** and spacecraft at
| short to moderate ranges, high quality pictures
were obtained,
3. Two-way monochrome Audio signals transmitted in both directions with
TV definite reduction in quality. Picture quality
about 20 dB**** poorer than for one-way trans-
migsions,
4. One-way 600 telephone Amount of noise in poorest telephone channel
channels about 6 dB more T than for CCIR commercial
grade circuits,
5. Two-way 12-channel Poorest channel typically had noise performance
telephony about equal to that for 600 telephone channel
transmissions. Crosstalk between carriers was
no problem,
6. High- and low-speed Data rates from those for 60-wpm teletypewriter
data including facsimile signals to 875 kbps were tried. Test results
satisfactory to excellent compared to results
obtainable on a 4000-mile microwave radio relay
system. Changes in absolute time delay caused
some timing problems for high~speed data and
facsimile. Doppler shift caused some distortion
in low-speed data signals,
Notes: *  Filtered to about 2 MHz to allow audio signal to frequency
modulate a 4, 5-MHz aural subcarrier.

** A color program demonstration with audio was conducted in
early January 1963 in which the audio modulation was inserted
during the time interval reserved for horizontal blanking.

***  No baseband filter employed,

**¥kx  About 16 dB of degradation due to reducing peak frequency
deviations from 7 MHz to 1 MHz. Remaining degradation from
reduced satellite transmitter power per carrier,

T When satellite is at maximum range.
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The communication experiments, noted in Table 6-8, are defined in detail
in Table 6-10, (29)(30)(8) This table includes the general results obtained. In
considering received carrier power fading measurements, note that the horizons
at Andover and Goonhilly are at about 2° and 0. 5° in elevation, respectively. Most
of the impairments to signal transmission were determined to be caused by the
ground terminals. In addition to the tests mentioned in T-able 6-10, a time syn-
chronization test was conducted. (29) Precision atomic clocks in the USA and UK
were compared by transmitting pulses simultaneously in both directions. The
accuracy of the method was bhelieved to be about 20 us and a difference in clock

time of 2 milliseconds was found.
6.6 OPERATIONAL RESULTS

No operational traffic was handled during this program due to its experimental
nature. However, the operational performance of the system, as the various
experiments were conducted, was of considerable interest as indicated by Program
Objectives 3 and 4 listed in Table 6-1. Operational performance of the two
satellites was as discussed in the description of program experiments in Paragraph
6.5. The ground complex operations diéplayed that satellite communications ground
terminals of satisfactory reliability to provide continuous commercial service were
feasible. The performance demonstration included showing a capability for
dependable satellite acquisitions and accurately tracking moving satellites.

Satellite tracking turned out to be less difficult than expected and special purpose
tracking antennas were determined not necessary. Perhaps the most spectacular
ground operational result was produced by the malfunction of the command circuit on
Telstar I on November 24, 1962. (32) Subsequent ground diagnosis and attemptis to
revive the spacecraft resulted in itg8 being successfully commanded "on'' again on
January 3, 1963. This was a first in satellite communications. The ability to
devise revised command signals to bypass radiation damaged transistors in the

command decoder were instrumental in the successful results obtained.
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Table 6-10. Telstar I and II Communication Experiments

Type Experiment

Nature of Results Obtained

1. Received Carrier Power

2. Frequency
Responses

3. Noise

4. Amplitude and Phase
Distortion

5. Doppler Shift

6. Absolute Delay

Measured values, in general, agreed with pre-
dicted values when range and spin axis aspect
angle of satellite are taken into account, Varia-
tions in received power clearly showed satellite
rotation, changes in aspect angle and changes in
range., No noticeable multipath fading observed
at Andover for elevation angles above about 4"
or at Goonhilly for elevation angles above about
3.

Baseband response essentially flat up to 5 MHz
when conventional FM receiver was used. For
FMFB receiver response flat up to 3 MHz, All
of response limitations appeared to be due to
ground terminal equipment employed.

Baseband noise performance, for various signals
employed, defined in Table 6-3. Measurements
for impulse noise indicated only random thermal
neoise present. Satellite repeater noise spectrum
on Telstar I observed to display considerable
peaking around communications carrier fre-
quency. This gives effective noise figure over
20 MHz of about 16,5 dB +2 dB.

Measurements of envelope delay, differential
gain and phase, and intermodulation noise taken,
Performance measured for television and 600-
channel telephony indicate objectives* for these
measurements met, Additionally, no audio to
video crossmodulation interference observed
and video to audio crossmodulation not signifi-
cant,

Measured and calculated curves of Doppler shift
agreed within 1 kHz over period of about 45 mins.

Measured and calculated delay agreed within
about 20 usec,

*Objective for intermodulation noise is maximum 36 dBrn total at 0-dB trans-
misgion level divided among various sources. Delay distortion objective
corresponds to a differential phase of 4.2, which is within 5° requirement for

N. T.S. C. color television,
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SECTION 7 - RELAY

7.1 PROGRAM DESCRIPTION

The Relay Program was conceived and implemented under the auspices of NASA/
Goddard Space Flight Center (GSFC), beginning in 1960. The objectives of the

program were:

1. To demonstrate the feasibility of relaying wideband communication signals

between ground stations via satellite relays in low altitude orbits

2. To evaluate spacecraft performance and to test the life of communication

satellite system components in the orbital environment, and

3. To measure the amount of radiation encountered, its effect on solar cells

and diodes, and the effectiveness of various amounts of shielding,

The spacecraft for this program were desighed and manufactured by Astro-
Electronics Division of the Radio Corporation of America, based on system engi-
neering studies by Thompson-Ramo-Wooldridge Systems Group, The Relay program
was directed by NASA (GSFC).

Two active satellites, Relay I and Relay II, were successfully launched into
medium altitude elliptical orbits, Relay I was launched on December 13, fi962, and
Relay II on January 21, 1964, The orbital parameters for both spacecraft aré shown
in Table 7-1. Relay I and II were basically of the same design, although certain
modifications were introduced into Relay II based on operating experiences with
Relay I. These modifications included the use of n-on-p instead of p-on-n solar cells

and changes in the wideband 'i'epeater high~power regulator circuitry,

The primary earth terminals participating in the Relay Program are listed in
Table 7-2. Tracking and telemetry data were provided by the NASA worldwide

network of Minitrack stations,
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Table 7-1. Participating Spacecraft

~Satellite Relay I Relay II
Manufacturer & Sponsor Radic Corporation of America/NASA
Launch Date 12/13/62 1/21/64
Launch Vehicle Thor-Delta Thor-Delta
Apogee (mi, ) 4612 4608
E 8 Perigee (mi.) 819 1298
?3 Inclination 47,5° . 46.9°
Period (min. ) 185 195
Last Useful Operation of | Last Useful Operation of
Status Transponder: Transponder:
2/10/65 6/9/67

Perhaps the most significant contributions to space communications from the

Relay Program were due to the obseﬁed malfunctions of the spacecraft. Major
difficulties included the power regulator failure on Relay I and a satellite command
receiver susceptibility to spurious signals, As a result of the power regulator
failure, it was recognized that dew point criteria and leakage tests had to be included
in all future power transistor procurement specifications and that equipment should
be tested throughout the temperature ralige, rather than at specific maximum, mini-
| mum, and typical values. The command receives -épurious responses resulted in a

recommendation that more complex command signals be designed for all future

spacecraft,
7.2 SYSTEM DESCRIPTION

The Relay system consisted of the orbiting satellite, 'the complex of partici-
pating ground and test stations, the Operations Center, and GSFC supporting activ-
ities, The satellite itself was basically a microwave repeater which received

frequency modulated communication signals on 1725 MHz for translation to 417¢ MHz
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Primary Earth Terminals Participating in the Relay Program

Table 7-2.
Date of Antenna
Location Sponsor Installation Diameter (ft.}
Andover (Maine) AT&T 1962 67.7
Nutley (N.J.) IT&T 1963 40,
Goonhilly Downs
(England) General Post Office 1962 85.
Fucino {(Italy) Telespazioc 1962/1965 30./44.
Rio de Janeiro Radio International
(Brazil) de Brazil 1963 30.
Raisting (Ger.) Deutsche Bundespost 1963/1964 30./85.
Ibaraki (Japan) Kokusai Denshin Denwa Co. 1863 65.
Kashima (Japan) Radio Research Laboratories 100.
Pleumeur Bodou Centre National d'Etudes
(France) des Telecommunications (CNET) 1962 67.7
Rao (Sweden) Scandinavian Committee for
Satellite Telecommunications (STSK) 1966 85.
Grinon (Spain) Compania Telofonica Nacional
de Espana 1964 85.
Mojave (Calif.) NASA 1960 40.




and retransmission, In the translating process the modulation index was tripled to
compensate for the bandwidth limitations of the earth terminal klystron transmitters,
Thé repeater transmitted one-way television signals, when operated in the wideband
mode, and 12 simultaneous two-way telephone conversations when operated in the
narrow-band mode, In addition to a redundant wideband communication system, the
spacecraft had a radiation experiment package, electrical power system, command
and telemetry system, and supporting structure, Satellite operating frequencies are
given in Table 7-3, The characteristics of the spacecraft and the ground stations

are deseribed inSections 7.3 and 7.4, respectively,

Table 7-3. Project Relay Frequencies (MHz)

Communications TT &C
Xmit, Mode Uplink Downlink Beacon Command | Telemetry
Wideband 1725,0+ 7.0 1 4169,7+ 11,5

1723,3+ 0,5 | 4164.7+ 1.5

Narrowband | 1706 73 0.5 | 4174.75 1.5

4080 148 136

The orbital parameters for both Relay I and II are described in Table 7-1. The

orbit was selected to meet the following requirements:

1. To maximize satellite mutual vigibility above a 5~degree horizon between
U, S, and Europe, A minimum of 100 minutes per day during the first 30

days was the achieved design objective

2. To provide acceptable mutual visibility fimes for the test stations and

smaller ground stations

3. To traverse a radiation environment guitable for evaluation by the on-board

radiation experiments

4. To minimize the simultanecus occurrence of mutual visibility times and

eclipses



5. The sun look angle was to lie between 90 + 15 degrees for the first 30 days

in orbit with 2 maximum deviation of + 31 degrees for a year's orbit

6. The launch trajectory was to be consistent with the range safety require-

ments at the Atlantic Missile Range.

Relay II was launched into a slightly higher orbit because of improved launch

vehicle performance,
7.3 SPACECRAFT

Except as noted, the Relay I and Relay II spacecraft exhibited no essential
differences. The principal characteristics of the spacecraft are presented in Table
7-4, Two completely independent microwa\fe transponders were provided for
increased reliability; their configuration is shown in Figure 7-1. Two modes of
operation were available with the transponder. The wideband mode was utilized for
one-way wideband communications such as television or 300 channels of telephony,
The narrowband mode was utilized for two-way communications such as 12-channel
two-way telephony, In the narrow-band mode, two ground stations could commu-
nicate with each other, one transmitting 6n 1723, 33 MHz, the other transmitting on
1726, 67 MHz, The spacecraft'transpoﬁdér converted these frequencies to 4165 MHz
and 4175 MHz, respectively, As noted previously, the modulation index was tripled
to compensate for the bandwidth limitations imposed by the earth terminal klystron

transmitters.
f, = 68,03 Me
ANDPASS|
..r poes LIMITER e TRIPLER \
LOCAL : LOCAL
OSCILLATOR TWO-WAY, TELEPHOME OSCILLATOR
i
1725.0 Mc-WB ’__é_ IF JBANDPASS _é_. 416972 Me-
1723.333 Mc} - B ampLiFIER [TT]. pirer [ MMTER ) TRIPER L ™[] 416a.72 mie WBNB
1726 .667 Me T | N74.72 M } -
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L] - fa Mo TELEVISION
Ge f= 70.0 Mc
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Figure 7-1 - Relay Satellite Transpondér Canfiguration



Table 7-4. Satellite Characteristics

Type L,C-Band slotted wave- VHF 4 Monopole Array for
0 guide, separate trans- TT&C
1 mit and receive
g
g Number One One
o Beamwidth 75° in any place thru the spin axis Essentially Omnidirectional
< Gain -1 dB (transmit and receive) Approximately -14B
Polarization Circular: RHP (receive), LHP (transmit) Linear in plane P%ﬁg&}egkfg
Frequency Band L,C-Band 7
Type IF Tramslating
Bandwidth 34 MHz @-1 dB Points (Wideband Mode); 2 MHz @-3 dB Points (Narrow-
@ Number Two (Including one spare) band Mode)
It Type Front End Down Conversion Crystal Mixer
o
2 g Front End Gain 6 dB Conversion Loss into IF followed by a limiter
E 8 System Noise Overall: - 13 aB
Figure
o Type Single 11 watt TWT
£ Gain 36 dB
» Power Out 10 watt
Y 4| EIRP - Microwave  9dBwW*
0 %-g Type Spin with Magnetic Torquing Coil, 160 RPM
g g_ﬁ Capability Unoriented relative to Earth, nominal 90° spin axis aspect to sun
M
21w af Primary Solar Array with 61 watts average output.
- 5 8 Supplement Nickel Cadmium Batteries, each cell having about 3-ampere
o | A2 hour capacity,
15
o Comm Power Needs 87 watts
& Size Basically Cylindrical, 30" diameter, 52" height
Weight 175 1bs.

*Derived value based on antenna gain and transmitter output power.



The microwave antennas were circularly polari'zed biconical horns with nominally
omnidirectional patterns about the spin axis to prevent amplitude modulation, Vertical
coﬁerage (in the plans of the spin axis) extended from 40 to 115 degrees (-1 dB points).
In addition, this particular antenna system provided decoupling between the two trans-
mitters and receiver of the spacecraft without any switches, thereby reducing losses
and increasing reliability., Further details on the microwave antenna can be found in

Appendix 7-A,

The VHF antenna consisted of 4 monopoles extending out from the bottom
mounting ring face of the spacecraft, For command reception the antenna elements
were fed in phase to produce a dipole-like pattern; while for telemetry and tracking
transmission they were fed pairwise in phase quadrature to produce a circularly
polarized wave in the plane perpendicular to the spin axis, In any planes parallel to

the spin axis the wave was linearly polarized.

All spacecraft power was generated by solar cells, Storage batteries charged
by the solar cells were used to supply the peak power necessary for repeater opera-
tion, On Relay I the solar cells were boron-doped silicon cells, p-on-n, gridded and
covered with 60-mil thick fused sheets. To decrease solar cell degradation due to

radiation, n-on-p cells were used on the solar array of Relay II.

In addition to the communications repeaters, and other subsystems needed to
support the principal mission of Relay, the spacecraft carried a group of components
to obtain data on particle radiation in space. These consisted of six rédiation detec-
tors and a collection of isolated solar cells and semiconductor diodes, The latter

were accumulated on a "radiation-damage-effects’ panel,
7.4 EARTH STATIONS

Some of the major earth stations participating in Project Relay are described in
Table 7-5 in terms of their basic characteristics, In the Relay system, the stations
at Nutley and Mojave were designated as Test Stations and, as such, had prime
responsibility to command the satellite and monitor telemetry, Other stations par-

ticipating in the program under agreements with NASA were designated as Ground



Table 7-5. Earth Terminal Characteristics

Fixed Terminal

Terminal TERMINAL
Feature aAndover Nutley/Mojave Fucino No. 1 Raisting No. 2
o — ; .
E ;ype . Conlfal Horn Refl. Pafabollc Refl..| parabolic Refl. Parabolic Refl.
3 perture Dia. | §7.7 40 30 85"
£ |Receive Gain 58 dB 49.1 aB 48.7 dB 57.5 4B
5 Rec., Beamwidth -
{? dB) 0.23° 0.458° 0.55° 0.20°
Efficiency 70-75% 30%* 45%* 45%*
H Type
g 5 Preamplifier TW Ruby Maser Uncooled Paramp | Cooled Paramp T.W. Ma
7 2| Banawiatn 25 MHz 25 MHz 25 MHz 25 iz
: a 3 [ o i
§ g‘ MNoise Temp. 32°K/Zenith 360°K 220°K/Zenith 54°K/7.5° elev.
+
E &1 amplifier Type| Klyst Klyst
by plifier Type| Klystron ystron TWT
% 3 Bandwidth No ﬁata No Data g?TMHz 25 MHz
P tput 10 kw 10
| Power Outpu kW 2 kW 12 kw
Type Autotrack by Programmed Programmed Track- |Computer Tracking
& Command Tracker, Tracking, ing, plus Mono- {Mcnopulse
- Precision (Beacon} Moncpulse pulse
% Tracker, or, Com- C
] municator Antenna ’
‘g | Accuracy Command Tr. + 1° Prog.Tr.* 0.1° No Data Computer Tracking
Precision Tr. [+ 0.01°
+0.02° Monopulset 0.1° Monopulse + (,00239
. | Comm. Ant. + .0057 -
+ - -
48 lom 41dB/°K* 23.5dB/°K* 25.3 dB/°K* 40 dB/oK*
H o ’
b g EIRP 120 dBm* 111 dBm* 104 dEm* 112 ABm*
,L .
E-é Transmit Feed |Circular Circular Circular Circular
+ . -
E [ Receive Feed |Circular Circular Circular Circular
& 160" Diameter
ized Dacron
1 | radome 210' Diameter, None Rthi;;i! .
L] Rubberized Dacron
L Noane ) )
o Type Facility | Fixed Terminal _Transportable Fixed Terminal
+
w
=
-

*Derived value based on data available.
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Stations. It should be noted that although the Nutley Test Station employed the same

communications antenna, they were separate operations,

The Communications Satellite Operations Center was established to handle
experimental scheduling, daily operations planning, and data processing. This
center also provided a centralized command post to exercise control over the satel-
lite, Supporting activities included telemetry data processing, orbital prediction,

and satellite tracking information,
7.5 EXPERIMENTS

Each of the participating stations was asked to submit a detailed experiment
plan concerning those tests in which that particular station would participate, The
communications experiments were divided into three classifications: wideband per-
formance experiments, narrowband performance experiments, and system demon-
stration experiments, System performance experiments - wideband and narrowband -
were intended as objective tests to obtain quantitative and statistical data on the
electrical parameters of the system by analyzing the response to carefully controlled
executions. The various major types of experiments prepared for the Relay program
are outlined in Table 7-6. Details of the experiments were given in the Relay Com-
munications Experiment Plan (RI-0521A), This plan gave the general purpose and
description of the individual experiments, and the test procedures for each of the

stations,

In order to make the most effective use of the entire Relay system, which
included the complex of participating earth stations as well as the satellite, it was
necessary to schedule the communications experiments with some care. Experiment
schedules were initially planned over a 1-month period. It was found useful early
in the program to assign operational days during each week to designated stations,
with the days assigned arbitrarily., Examination of orbital data would then indicate

which passes on each day were usable for the station designated for that day.

For detailed experimental results the reader is referred to the bibliography.

General conclusions were as follows:
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111,

Table 7=6, Major Relay Communication Experiments

Wideband Performance Experiments

A, Received Carrier Power
B. Insertion Gain Stability

C. Noise Measurements: Continuous random, impulsive, periodic,
baseband, ground terminal IF, and satellite noise

D. Linear Distortion: Field-time, line-~time, and short-time
distortion plus amplitude-frequency and phase-frequendy char-
acteristic at both baseband and RF,

E. Nonlinear Distortion: Differential gain, envelope delay, syn-
chronization nonlinearity, audio distortion, and intermodulation
noise

F, Interference

G, Special Transmission Tests: Doppler shift, absolute delay, and
tracking accuracy

H, Television Test Patterns: Monochrome and colot,

Narrowband Performance Experiments

A. Recelved Carrier Power
B. Insertion Gain Stability

C, Noise Measurements: Continuous random, impulsive, periodic
and satellite noise

D, Linear Distortion: Amplitude-frequency and phase-frequency
at baseband

E. Nonlinear Distortion: Envelope delay, intermodulation noise,
and intelligible croastalk

F. Interference

G, BSpecial Transmigsion Tests: Doppler shift, absolute delay,
tracking, clock pulse synchronization, and multiple loop.

System Demonstration Experiments

A, Television: Monochrome, color, and narrowband
. Telephony: One-way and two-way

. Digital Data Transmission: High and medium rate

.

Program Material: Music

B O O

Satellite va, Conventional Communications Comparison: -Teletype,
facsimile, and high-rate teletype

Multiple Satellite Tests,

A
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7.6

Television - No appreciable degradation of the signal could be attributed

to the satellite except for the exj:ected noticeable increase in noise, The
received pictures at Pleumeur Bodou were always of excellent quality and
were often transmitted overf"the European network. At Goonhilly Downs good
quality of the satellite video channel was obtained; multipath and echo

signals were imperceptible. Further, doppler frequency shifts are

observed to have no effect on the quality of the received monochrome

video sighal,

Telephony - Links were always excellent with respect to the contact
established and noise in the telephone channels,

Facsimile - Some deformation {skew) caused by the variation in propagation
time during the transmission could be seen. For photographs lacking in
fine detail the effect was tolerable; for newspaper pages or drawings the

effect could be sufficiently large to be troublesome,

Radiation Experiment - The n-on~p solar cells were shown to be more
resistant to radiation than p~on-n cells, Some mapping of the electron

and proton fields in the Relay orbit was also accomplished.

OPERATIONAL RESULTS

The objectives of the Relay program were entirely experimental in natdre;

therefore, no operational traffic was handled. The program was extraordinarily

successful with malfunctions in either the satellites or ground complex being infre-

quent, However, it was not entirely free of operational difficulties. Most trouble-

some was an inability to turn off one of the high power regulators and its associated

wideband repeater on Relay I, Analysis indicated that excessive reverse leakage

current in the high power regulator series pass transistors prevented the regulator

from being shut off, The cause of this excessive reverse leakage current was appar-

ently moisture precipitating on the active surface of the transistor as the junction

temperature passed through the transistor's dew point temperature, After about 12
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months operation the problem seemed to disappear, perhaps due to the evaporation
of the condensation into the vacuum of space, In addition, spurious responses by the
spacecraft were observed rather frequently by noting the satellite equipment being

turned on and off in the absence of ground commands,
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APPENDIX 7-A, THE RELAY MICROWAVE ANTENNA

The microwave antenna requirement for the Relay spacecraft included:

1. JOmnidirectional pattern about the spin-axis

2, Coverage from near 35° to 120° in zenith angle as measured from the

spin axis
3. Circular Polarization

4, Sufficient decoupling between the two Relay transmitters to prevent the

inactive one from loading the active one
5, Sufficient decoupling between transmitters and receiver.

These requirements were met in a unique slotted waveguide antenna designed by
0O, M. Woodward of RCA., The transmitting portion of the antenna was comprised of
five parts: the mode transducer, the coaxial wavequide transmission line, the quarter-
wave plate, the inclined-slot exciters, and the radial waveguide, The mode transducer
congists of two de-coupled input ports near the base of the antenna, With this the input
coaxial TEM mode line can feed the coaxial TE 11
The two input ports were oriented at right angles so that the TE__. modes excited in the

. 11
coaxial waveguide would be orthogonal., In addition, the transmitter ports were one

~mode waveguide transmission line,

guide wavelength apart to reduce direct crosa-coupling between them, To provide still
further isolation, a quarter-wave plate consisting of two longitudinal metal ridges
attached on opposite sides of the coaxial waveguide inner conductor was employed to
convert the linearly polarized waves from the separate input ports to circularly
polarized waves of opposite rotational sénse. The radiator itself consisted of eight
slots inclined at an angle of 55° and equally spaced about the outer conductor. Because
the radial and tangential components of the field radiated by these slots were observed
to be inphase, a radial waveguide, constructed from two parallel metal discs, was
employed to obtain the quadrature phasing required for circularly polarized radiation,
The phase velocity of the axial component was unaffected by these discs, The phase
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velocity of the tangential component, however, was a function of the spacing, Hence,
by proper choice of spacing and diameter, a differential phase-ghift of 90° between
these two components was obtained, to produce circular polarization of the plane normal

to the spin axis,

The receiving portion of the antenna consisted of three parts: the trangsmission
line, the inclined radiating slots, and the radial waveguide, Only a single port antenna
was needed for reception as the two receivers were joined in parallel, The receiving
antenna was mounted above the—transmitting antenna and connected to the receiving
port by a coaxial transmissionv line residing interior to the coaxial line of the trans-
mitting antenna, The receiving radial waveguide acis similarly to that of the trans-
mitter in causing a 90° phase shift between the orthogonal, axial and tangential,
electric-field components. The slots are oppositely inclined to those of the transmitter,

resulting in opposite sense, circular polarization,
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SECTION 8 - SYNCOM

8.1 PROGRAM DESCRIPTION

A spin-stabilized synchronous communications satellite was first proposed by
Hughes Aircraft Company in the autumn of 1959, (1) Project Syncom was initiated
as a joint NASA/DOD development in August, 1961, The major objectives of this
program were to develop the capability of launching satellites into earth synchronous

(2)

orbits and to demonstrate the utility of this type of orbit for satellite communications.

Three spacecraft were launched during the course of completing Project Syncom,

(4) (5) (6) Syncom 1 went totally silent during the firing

as indicated in Table 8-~1,
of its apogee motor in an attempt to complete injection into a synchronous inclined
orbit. Subsequent optical sitings revealed that the desired orbit was attained to
partially satisfy t.he program objectives. Syncom II was successfully launched into

a synchronous inclined orbit and initially positioned over Brazil at 55° W. longitude.

It was later moved to a final location over the Indian Ocean. Numerous experiments
and demonstrations were conducted to satisfy all program objectives. Subsequent

to the initial successful operations with Syncom II, the Thrust Augmented Delta

rocket became available, making possible further improvements in the synchronous
orbit injection technology. This launch vehicle allowed Syncom III to be successfully
placed into a synchronous equatorial orbit (i, e., a geostationary orbit). The

gatellite was positioned over the Pacific International Date Line and additional
communications measurements and demonstrations were conducted. With all of

the Syncom programs' experimental objectives attained, Syncoms II and Il were
turned over to DOD in early 1965 to provide an operational communications capability
serving the Far East, Pacific Ocean and Western United States. This continued

until the first worldwide military satellite communications system became operationai
and was able to assume the communications load (see Section 12),

The principal earth terminals involved in the program were supplied by the U.S.

(3) (4) (6-11}

Department of Defense and are indicated in Table §-2. Satellite



Table 8-1,

Participating Spacecraft

Satellite Syncem | Syncom il Syncom il|
Manufacturer & Sponsor Hughes Aircraft & NASA
Launch Date 2/14/63 7/26/63 8/19/64
Launch Vehicle Delta Thrust Augmented Data
Orbital Data*
Apogee (Mi.) 22,978 22,760 22,590
Perigee {(Mi.} 21,205 22,072 21,578
Inclination 338° 33.1° 0.31°
Period {Min.) 1,426.6 1,454 1,423
Status Spacecraft became inactive during Spacecraft activé. Stationkeeping Spacecraft active. Stationkeeping
apogee motor firing to attain syn- capability exhausted. Left at about | capability exhausted. Left drifting
chronous orbit. 77° E. longitude.** West. Circles earth in about 18
months.
NOTES: *At initial injection. Attitude control and stationk eeping produced changes

**Stable equalibrium point in earth’s gravitational field.




Table 8-2. Participating Earth Terminals

Location Sponsor Antenna Date
Diameter (Ft.) Installed

Ft. Dix, N.J. * U.8. Army 60 1962
Camp Roberts, Calif. * U.S. Army 60 1962
Lakehurst, N.J. ** U.S, Army 30 1962
Greenbelt, Maryland ** U.S. Arrﬁy 30 1963
Republic of Viet Nam *** U.S., Army 30 1964
Thailand **** U.S. Army 15 1964
Asmara **** U.S8. Army 15 1964
KingsportT U.S, Navy 30 1962

USS Canberral U.S, Navy 6 1965

Uss Midw'ayT U.S. Navy 6 1965
Kashima, J apanﬁ Japan's Radio 32.8 1964

Research Lab
Point Mugu, Calit.J T U.S, Navy 85 1964

* Fixed AN/FSC-9 terminals.

** Transportable AN/MSC-44 terminals later relocated to Hawaii and
Philippines,

*** Transportable AN/MSC-45 terminal.
**** Transportable MK-IV terminals.
TU.S. Navy ships.
TTTransmitting terminal only.

TTTReceiving terminal only.




launchings were provided by the National Aeronautics and Space Administration (NASA),
The NASA Worldwide Minitrack network collected tracking and telemetry data. Selected
newfy procured tracking, telemetry, and command (TT&C) terminals were also pro-
vided by NASA. One of the most important of these was located on the Kingsport,

The great contribution of Project Syncom to satellite communications technology
was to display the feasibility of placing satellites into synchronous equatorial orbits and
maintaining precision stationkeeping aind attitude control. The synchronous equatorial '
orbit significantly reduced the ground terminal tracking requirements and made it
possible to establish an essentially worldwide communications system with as few as
three or four satellites. The only earth areas without satellite visibility in such a
system are the regions immediately around the North and South Poles. The high
altitude of the synchronous orbit and the capability to precisely maintain the satellite's
spin axis at a 90° attitude relative to the orbital plane made it possible to employ
antennas providing pancake-shaped radiation patterns of significantly higher gain than
the previous essentially omnidirectional satellite antennas. Finally, the communi~
cations experiments verified the link propagation parameters and provided the first
indication that round trip time delay and return echo due to two-wire user terminations
are not insurmountable obstacles to the use .of synchronous satellites in commercial

communications applications,
8.2 SYSTEM DESCRIPTION

Initial tests performed while Syncom II was stationed over Brazil involved the
Fort Dix, Camp Roberts, Lakehurst, and Kingsport terminals. After the satellite was
repositioned over the Indian Ocean, tests were conducted employing principally the
Asmara, Philippines, and Thailand terminals, Tests involving Syncom III included
the Camp Roberts, Hawaii, Viet Nam, Kingsport, USS Canberra, USS Midway,
Kashima, and Point Mugu terminals, among" others. Practically all transmigsions
over either satellite were conducted on a loop-back basis or over a single link between
two terminals. Both half and full duplex links were established.

Typical earth coverages supplied by the synchronoué orbits of Syncoms II and III
| are illustrated in Figure 8-1. ®) The significantly smaller area of 24-hour earth
8~4



coverage provided by Syncom II is due to its inclined orbit resulting in a daily figure

eight earth trace of the subsatellite point.
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Figure 8-1. Syncom Earth Coverage

Operating frequencies for the Syncom satellites were as indicated in Table

(5)

8-3, The communications frequencies were selected to be compatible with the

i
ground complex under development at that time for the Army's Project Advent. (M)
Upon termination of this synchronous satellite project, the Fort Dix, Camp Roberts,
and Kingsport terminals rec}uired only relatively minor modifications to become

part of the Syncom program.

Basic signal processing techniques used in the Syncom program were ag indicated
in Table 8-4, S Power balancing for duplex operation was accomplished manually
by coordinating between terminals via leased conventional circuits. Margins for

duplex operation were quite narrow but had to account only for rain losses, inaccurate



Table 8-3. Syncom Frequencies (MHz)

COMMUNICATIONS TT&C
SATELLITE UPLINK | DOWNLINK BEACON COMMAND TELEMETRY
Syncom Il 7361.275* 1814.969
7363.000* 136.470**
7362.582 1815.794 1820.117 148.260
Syncom |11 7363.000 1815.794
7362.138 1814.931 136.980**

*Duai channel narrow band repeater
**Redundant transmitters

Table 8-4. Signal Processing Employed

Multiple Access

RF Modulation

Demodulator

Performance

Lakehurst Receive
Carrier—to—Noise

(C/N)

Lakehurst Receive

Margin

FM and PSK**

12 dB for 43.2° antenna elevation
noise bandwidth

Conventional Discriminator — 2 dB

FMFB Receiver — 6 dB

Frequency Division* for up to two carriers to support duplex aperation

Conventional Discriminator — Threshold at about 10 dB C/N
FMFB Receiver — Threshold at about 6 dB C/N

. one satellite access, and 188—kHz

*Spread Spectrum modulation and more than two accesses were displayed in special tests.

**The Advent modem employed in a limited number of tests.




power balancing, and various miscellaneous variations in link parameters of lesser

magnitude.
8.3 SPACECRAFT

Spaceecraft characteristics for the Syncom satellites are displayed in

~ Table 8-5, 3 (4,) () (13) All three satellites contained identical apogee motors for
 final orbit circularization, The basic configuration for the communications subsystem
on the Syncom satellites is displayed in Figure 8-2, ) Each receive channel consists
of a mixer, a local oscillator, an IF amplifier, a limiter amplifier, and a mixer
connected through a hybrid to the redundant TWTs. |

4 16 TeLeuETEY

F RECETVER TRAMSMITTER
NO. 1 NO, |

ANTENMA DUAL ANTENNA

ERECTOR
;—.L. i ., COUNEAR 5LOT Aty sto1
DHOLE
. COAX
HYBRib COMMAND
comoma s Jor ] S A
. A0 J0 (RECEIVER
(TRANSMITTER ANTENMA}  ANTENNA}

TRANSMITTER
NO, 2

A, COMMUNICATION SUBSYSTIM

Figure 8-2, Satellite Communications Subsystem

Syncom II differed from Syncom I only in nitrogen tank mounting and internal
operating pressure, the wiring harness, and the addition of a standby battery to pro-
vide 40 minutes of telemetry should the-main power supply fail. These changes re-
sulted from the conclusion that a high-pressure nitrogen tank failure caused the loss

of Syncom I,

Based on Syncom II experience, several modifications were also made to Syncom .
III, N-on-P solar cells with 12-mil fuzed silica covers replaced the more radiation
sengitive P-on~N solar cells with their 6-mil glass covers. A redundant hydrogen
peroxide (’Hzoz) system replaced the high pressure nitrogen (Nz) system, The stand- ;’I

by battery and apogee motor timer were deleted. Two temperature sensors were
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Table 8-5, Satellite Characteristics

Weight

78.8 tbs. initialty in arbit

SATELLITE SYNCOM 1 8 11 SYNCOM 111
Type UHF Xmit, — collinear array of slot { VHF—4 whip turnstile for TTRC
5 dipelas SHF Recv, — slot dipole
% Murnber One One Essentially the same as for Syncom | & 41
|"'-" Basmwidth Pancak e beam about 25° wide at Essentially Omnidirectional
5 3—dB pts. far Xmit,
Gain Xmit. —6dB 0dB
Recv. — 2 d8
Freguency Band SHF Recy, and UHF Xmit.
fequency — Same s for Syncom | & 1
Type iF Translation Hard Limiting
3d8 BW 5 MHz | IEELS 4.5 MHz | 13MHz2 or BOKHZ**
MNumber Redundant Xpandars of diffarent 8W selectable on ground command
g Receivar
.”_‘ Type Frant End Down Conversion Mixer
= Front End Gain 90 dB IF following down converter
a, . .
g._" Sys. Naise Fig. 10 d8 Essentially the same a5 for Syncom | & 11
Transenitter
Type Redundant TWTs***
Gain 33dB
Power Qut 2 watt (nominal)
E'RP — UHF Ant. &daw
Stabilization
Tvpe Spin with H,0, and Ng reaction control™*** Spin with H202 reaction control****
wm
g Capability Spin axis could be maneuvered to within 1° of narmal to orbital plane.
'z | Power Source
u Primary Solar Array — 28 watt output at launch
E Supplement 2 Nicket Cadmiumn Batteries — about 0.8 amp. br, per battary at launch
g Comm. Power Needs About 15 watt Essentially the same as for Syncom | & 11
a | Size Cylindrical — 15.5 in. high & 28 in, diameter

73.8 Ibs. initially in orbit

"Bandwidth for each of two channels provided for mora convenient full duplex narrowband aperaticn.

**Either wideband or narrowband moda can be selected,
"""Either TWT can operats with eithar transpondar. Interlocks prohibit parallel operation.
****Gas jsts provide both attitude corrections and stationkeeping.
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added. The transponder containing two 0. 5-MHz bandwidth IF sections was replaced
by a 10-MHz bandwidth channel for television tests with a 50-kHz option for small
station testing,

8.4 GROUND TERMINALS

Among the participating earth terminals listed in Table 8-2, the AN/F5C-9, the
AN/MSC-44, and the Kingsport terminals were the principal stations involved in the
early testing on both Syncoms II and ITI, Characteristics of these terminals are

(3) (6) (9) A1) (14) (15) Major subsystems of the ground

presented in Table 8-6,
facilities placed aboard the Kingsport are shown in Figure 8-3. (3) The AN/FSC-9
and AN/MSC-44 terminal installations did not, in general, include the TT&C antenna

and system.

The transmit and receive polarizations available at the AN/MSC-44 and Kingsport
terminals were compatible with those of the Syncom sattellites. In contrast, the
receive polarization of the AN/FSC-2 terminals was such that a 3-dB polarization
loss was suffered. By choosing circular polarization, however, it was no longer

necessary to track variations in the linear polarization received from the satellite.

The AN/FSC-9 and AN/MSC-44 terminals employed two axis (i.e., azimuth and
elevation) tracking and control of the antenna. The Kingsport terminal was provided
with a three-axis antenna, however, to ensure a capability for near zenith operation

from the rolling and pitching ship,
8.5 EXPERIMENTS

Experiments conducted on project Syncom are grouped in five major categories
and defined in Table 8-7. Synchronous orbit injection was successfully completed on
Syncoms I, I and III. In the latter case, a synchronous equatorial orbit was realized,
Spacecraft stationkeeping and attitude control were successfully maintained on '
Syncoms O and III. In the process of stationkeeping, considerable data on the triaxial

nature of the earth and the drift of synchronous satellites was generated. (16) A7) (18)



Table 8~6, Characteristics of Major Earth Terminals

Rec. Beamwidth

0.65° at 3 dB Pts.”

1.3% at 3 dB Pts.

TERMINAL
TERMINAL
FEATURE AN/FSC-9 AN/MSC—44 KINGSPORT
< Type Parabolic Reflector Parabolic Reflector Parabolic Raflector
Z | Aperture Size BO Ft. Diametar 30 Ft. Diameter 30 Ft. Diamater
& | Receive Gain 48 dB 4248 40 dB
% Efficiency 50% 50%* 35%°

1.6° at 3dB Pts.*

SYSTEM

Type Preamplifier

Temperatura Controlled
Parametric Amplifier

Temparature Controlled
Parametric Amplifier

Temperatura Controtled
Parametric Amplifier

w
2
w
8 Bandwidth 100kH2"" 100 kHz""* 100 kHz"*
o« Noise Temp. 230°K st 7.8° E!. 200°K at 7.6° El. 200°K at 7.5° El.
[
g ?u Tvype Amplifier Klystron Klystron Klystron
%B Bandwidth 100 kHz"** 100 kHz*** 100 kHz***
'n_:ﬁ " Amp. Pwr, Out 20 kWt 20 kW 20 kW
g
Z | Typs Conical Scan Autotrack Conical Scan Autotrack | Spiral Sean Autotrack
3 | Accuracy 10.024 $0.06° +0.05°
©
[t
-
L |oT 24.44B/°K* 19 dB/°K* - 17 dB/°K*
EE EiRP 128 dBm* **** 123.4dBm" **** 125.3dBm™ """
1z '
] Transmit Feed Circular Circular Circular
5 E Receive Feed Circular Linear Circular or Linear
E N {Interchangeahla)
|
&l g Radome Nona None 53 F1. Diameter
E = Pressurized
2 < I Type Facility Fixed Terminal Transportablet Ship

*Derived value based on data available
**IF bandwidth variable to 10 and 40 kHz. RF bandwidth is 10 MHz at 3—dB pts.
***Radisted signal bandwidth. RF bandwidth is 16 MHz at 3—dB pts.

RRE

Peak possible. Operationally the practical limit is 3 dB less.

tincluded eight vans, all air—transpartable in C124 and C133 aireraft. Total weight about 65,000 Ibs.
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TABLE 8-7, SUMMARY OF PROGRAM EXPERIMENTS

Type Activity Nature of Activity
1. Synchronous Orbit Injection Demonstrate launch and synchronous orbit
injection of gpin stabilized satellite.
2. Stationkeeping and Attitude Demonstrate precision control of spin
Control axis attitude and central longitude of earth
subsatellite point.
3. Communications Demonstra- Display feasibility of synchronous satellite
tions communications to live audiences,
4, Communications Perform- Measure overall communications per-
ance formance of synchronous satellite system.,
5, Communications Technical Measure detailed link and communications
Characteristics parameters in synchronous satellite system.

Thousands of successful special tests and demonstrations were performed over
the Syncom satellites. These include numerous demonstrations of teletype, telephony,
and facsimile. Special demonstrations displayed vocoder operation, multiple access
using spread spectrum, real time relaying of satellite telemetry, transmission of
oceanographic data, continuous 24-hour auto-tracking, 28 hours of continuous com-
munications with the Kingsport while underway at sea, and direct teletype communica-
tions with an aircraft in flight, The latter employed the VHF command receiver and

telemetry transmitter on Syncom III, (19)

Special occurrences among the demonstrations included President J. ¥, Kennedy
speaking from the White House to the Prime Minister of Nigeria;President Kennedy's
address to the United Nations; conversations between participants in the 1963 Extraor-
dinary Administrative Radio Conference of the ITU in Geneva, Switzerland, and mem-
bers of the U, N, in New York; and international TV coverage of the Olympics from
Japan in October, 1964. The demonstrations also displayed that satellite time delay
and echo could be overcome. However, to accomplish the latter it was found necessary

to maintain incoming conventional phone line levels at -15 dBm or above with the
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equipment employed. The time delay presented few psychological problems even with

unexpectant speakers.

The communications performance experiments described in Table §-7 are de-
fined and their basic results presented in Table 8-8. (3} (4) (15) (19) Results indicated
are for half duplex operation. The Syncom II television transmissions involved a wide-
band FM modulator at Fort Dix. At the receive end, the Bell Telephone Laboratory's
Andover terminal was outfitted with a maser preamplifier operating at the Syncom
frequencies, The Syncom III Japan to California television test was the 1964 TV cover-
age of the Olympics. Television p-p signal to weighted rms noise ratios would be
about 8 dB better than the unweighted values indicated in the table. This means signals

were quite viewable but not of high quality,

The communications technical characteristic measurements noted in Table 8-7
are described in Table 8-9, @) @ In addition to the tests mentioned, the frequency
response of the 50-kHz transponder on Syncom III was measured. It displayed an 87-
kHz bandwidth at the 3-dB points. Further, measurements of the Faraday rotation of
the 137-MHz telemetry signal from Syncom III provided considerable data on the

electron content of the ionosphere. 0) (21)

8.6 OPERATIONAL RESULTS

The communications system operations on Project Syncom displayed that highly
reliable synchornous satellite communications systems were feasible. During the
initial experimental period of the program, operational responsibility for the Syncom
satellites rested with NASA while DOD operated and maintained the ground communi-
cations terminals. In early 1965, DOD added the satellites to itg operational responsi-
bilities and employed them to provide operational military communications for the
Far East, Pacific Ocean area, and Western United States. During all of the time the
Syncom satellites were actively employed, no significant operational difficuities were
encountered. Minor difficulties included a slight gas leak, a buildup of H202 pressure,
and one receiver occasionally going into oscillation upon turn on under high space-
craft temperature conditions. Ground terminal operation and tracking was, in general,
routine.
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Table 8-8. Communications Performance Experiments

TYPE EXPERIMENT NATURE OF RESULTS OBTAINED

1.  Telephaony Single channel S+N/N of 35 dB* readily attained with maximum FM deviation** ratio

emplayed. Multichannel*** operation demonstrated on Syncem |11 at reduction in per
channel performance,

2. Data Transmission Using vestigial sideband modems operating into 4—kHz haseband input to normal FM

terminal eguipment, 3—khps rates at low error rates**** were possible. Using PSK RF
modulation, data rates as high as 50 kbps were possibie.

3.  Teletype For single channel operation into 4—kHz baseband input to normal FM terminal equip-

ment, error rates of 0.1% were readily attained. For 1 of 16 channels into 4—kHz base-
band, error rates less than 1% were attained.

4,  Facsimile Operating into standard FM terminal equipment, averall picture quality numerically

rated at 7 on a D to 10 scale was commonly obtained. Factors degrading quality included
bandwidth limitations,t phase delay distortion,t and satellite spin rate modulation.

5.  Television Fort Dix to Andover through Syncom Il realized 26—dB p—p signal to rms noise ratio. Tt
Kashima to Point Mugu through Syncom L realized 34—dB p—p signal to rms noise
ratio. t1t

B. Direct Aircraft TTY Pan American scheduled aircraft to Camp Roberts through Syncom [l VHF command

receiver and telemetry transmitter realized under proper caonditicns, up to B0—wpm
TTY .ttt

NOTES:

*Signal was 1—kHz tane; 35 dB provided better than 99% sentence intelligibility,
**Maximum was 10; lower ratios were also selectable,
#**Eaur channel AN/TCC—-3 multiplex employed on Syncom II1.
***+0n order of 10~5 bits/bit.
tGround terminal equipment imposed limitations.
11Video baseband bandwidth —2.5 MHz, p—p FM frequency deviation —4.5 MHz, preemphasis — 14 dB, and
audio signal transmitted separately.
111 Video baseband bandwidth —2.5 MHz, p—p FM frequency deviation —7 MHz, preemphasis —14 dB, sync
pulses removed and regenerated at receiver, and audio handled separately.
t11tAircraft had verticatly and horizontally polarized Yagi antennas. Roberts used TT&C Yagi antenna.
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Table 8-9, Communications Technical Characteristics Measurement

TECHNICAL CHARACTERISTICS

NATURE OF RESULTS QBTAINED

1. Spacecraft Transfer Function

2. Ground Terminal UHF/SHF Beam Alignment

3. Received Carrier Power at Ground

4.  Received Signal Level at Satellite

5. Frequency Response

6. Envelope Delay

7. Spacecraft Antenna Pattern

8. Intermodulation

9.. Spacecraft Oscillator Frequency

Beacon receives total output power for no communications signal present.
Communications input must be varied over several dB to completely sup-
press beacen and capture TWT.

Determined from peint of maximum suppression of beacon signal, Good
alignment found.,

Measured values, in general, agreed with predicted values. For antenna
elevation angles above 7.5, no selective fading due to multipath existed.

Agreed well with predicted values.

For 4--kHz channel, baseband response exceeded the requirements of M1
STD 1888 for a 6000—n.mi, reference circuit. *

For 4—kHz channel, baseband response exceeded the requirements of M|L
STD 18BB for a 6000—n.mi. reference circuit.*

Performed with satellite spin axis in plane of orbit. Pattern shapes agreed
well with prelaunch measurements and indicated about 1.59 error in meas-
ured satellite orientation parameters.

Not performed on Syncom 11, Nearly all measured degradation was due to
AN/TCC—-3 and FM modulation/demodulation.

Measured frequency agreed with prelaunch measurements,

*Ground terminal equipment imposed limitations,
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SECTION 9 - LINCOLN EXPERIMENTAL SATELLITES

9.1 INTRODUCTION

From its inception, the Lincoln Laboratory of the Massachusetts Institute of
Technology has had an interest in long-range military communications systems.
Early work was with ionospheric and tropospheric scatter systems. The scatter
concept was extended, under U. S. Air Force sponsorship, to the West Ford Program,
Upon successfully concluding Project West Ford, the Laboratory's program aims
were recast, in 1963, towards developing active communications satellite techniques. @)
This program, also under Air Force sponsorship, has made use of the original West
Ford ground terminals as well as small mobile ground terminals to communicate

through a series of Laboratory-developed satellites designated the Lincoln Experi-
mental Satellites (LES).

Lincoln Laboratory's active communications satellite program has been con-
cerned with the development and testing of new spacecraft and ground terminal tech-
niques having application to military command and control. @) The objective of the
spacecraft techniques investigations has centered on obtaining the maximum satellite
effective radiated power for a given satellite mass. In agreement with this objective,
research has been conducted on improved spacecraft power-generation systems, high
efficiency spacecraft transmitters, high-gain spacecraft antennas, and spacecrafi
attitude stabilization and stationkeeping systems, The surface terminal techniques
investigation has focused on developing methods of more effectively utilizing a
given radio signal strength generated by a communications satellite. Areas of
interest have included the development of efficient modulation-demodulation systems,
random multiple access techniques having no stringent synchronization and control
requirements, source signal encoding techniques that reduce required user data rates,

low noise receiving systems, and simple antenna systems suitable for small terminals.



In the first phase of the program, particular attention was given to X~band fre-
quencies in the vicinity of the microwave bands allocated for military communications.
Thié emphasis was a natural extension of the X-band capabilities developed during
the Project West Ford experiment, 3) In the second phase of the program, attention
has been focused on frequencies in the 225 to 400 MHz UHF communications band,
This band is used for a wide variety of United States government communications ser-

vices,

To date, six satellites, LES-1 through -6, have been launched as part of this
program and employed in experiments, LES-7 was conceived as a high ERP, three
axis stabilized, 300 to 500 pound satellite using a lens antenna and a 19 horn feed
cluster to provide a composite beam whose shape could be carried by ground command
to fit the earth coverage requirements of a particular link. This satellite would have
operated at X-band but funding considerations plus a greater interest in experiments
at the UHF frequencies resulted in its cancellation, Presently, plans exist for a
LES-8 and LES-9 to be launched by late 1974 but these experiments are still in the

concept formulation stage,
9.2 X-BAND SATELLITES

9.2.1 General Description

Specific objectives of the satellites and earth terminals included in this portion
of the LES program are listed inTable 9-1,

Table 9-1. X-Band Experiment Objectives

Number Deseription

Investigate X-Band Satellite Communications Performance

Display Operation of Solld-State X-Band Transponders

Investigate Despun Antennas

Evaluate Autonomous Batellite Attitude Control

Study Space Radiation Environment

Demonstrate Efficlent Error Correcting Coding-Decoding Techniques
Investigate Minimum Data Rates for Volce Signal Transmisgsion

Study Multiple Aceess Techniques with no Stringent Synchronization
Reguirements
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Three X-band satellites have been launched dﬁring the LES program as indicated
in Table 9-2(4) (5). LES-1 was correctly injected, by its launch vehicle, into an
inclined medium altitude circular orbit, However, a design flaw in the satellite's
ordnance circuity prevented ignition and separation of the rocket motor supplied for
final orbit injection, This left the combination in the medium altitude circular orbit
" instead of a 1500 by 8000 nautical mile inclined elliptical orbit as planned, At separa-
tion from the launch vehicle, the satellite-rocket motor combination was spun up about
the axis of least inertia to 1‘80 rpm, When the rocket motor failed to separate, spin
axis conversion immediately started to occur, Before it was completed, a few initial
communications tests were conducted, The X-band repeater and antenna switching .
system functioned properly but the tumbling mode that was assumed destroyed LES-1's

usefulness,

LES-2 was successfully launched along with the Lincoln Calibration Sphere
(LCS)-1 later in 1965, This satellite was almost identical to LES~1. With the
benefit of a revision of the satellite's ordnance circuitry, it was placed into the type of
orbit that had been planned for LES-1. Numerous communications experiments were
conducted with this satellite and all objectives listed in Table 9-1, with the exception of
Item 5, were accomplished. The satellite contained no experiment measuring the

space radiation environment,

LES-4 was launched along with LES-3, Oscar 4, and OV2-3 as a secondary
payload aboard the third flight test of the Titan INIC, LES-3 was a UHF Lincoln
Experimental Satellite operating as a radio signal generator. Oscar 4 was an amateur
radio communications satellite for use by "Hams'' throughout the world, 0OV2-3 was
a scientific satellite to gather data on solar and geomagnetic activity by measuring
changes in cosmic ray and trapped particle fluxes. The objective was to place LES-3
and LES-4 into near synchronous (i.e., 18,200 nautical mile), circular orbits having
a 0° inclination, After a near perfect injection into parking and transfer orbits, the
Titan III C third stage failed to ignite and LES-3 and LES-4 were ejected into highly
elliptical inclined orbits.
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Table 9-2. X-Band Spacecraft

Satellite

LES -1

LES - 2

LES -4

Manufacturer & Sponsor

Lincoln Laboratories & U, S, Air Force

Launch Date 2/11/65 5/6/65 12/21/65
Launch Vehicle Titan OI A Titan OI C
Apogee (mi.) 1744 9384 20, 890
Z | Perigee (mi.) 1726 1757 124
8
a o o
5 | Inclination 32, 2° 31.4 26,86
3
8 | Period (min.) 145.7 315. 2 589.6
In orbit, solar array In orbit but Transmission ceased in
degraded, and tumbling was shut down |[October 1968. Orbit sub-
Status with sate]lite rocket automatically |[sequently decayed and
motor still attached. by its internal |satellite was destroyed.

clock in 1967.

elliptical orbit,

NOTE: (1) At initial injection, Parameters of LES~4 were altered by atmospheric
drag due to the low perigee.




LES-4's initial spin axis orientation was such that solar panel illumination pro-
vided telemetry power only. By late 1965, a residual magnetic moment along the spin
axis had precessed the spin vector until the sun was only 47° below the satellite
equator, This provided sufficient solar power to allow operation of all systems. As
a result of the unplanned orbit, one of the two onboard antenna switching control
systems and the magnetic spin axis orientation system could not be operated. However,
one of the two antenna switching control systems did operate properly and all of the
objectives listed in Table 9-1, with the exception of Item 4, were for the most part
successfully accomplished,

The principal satellite communications terminals participating in experiments
with the X-Band LES satellites are listed in Table 9-3(6) (7), The terminal at Camp
Parks and one of the terminals at Millstone Hill were the facilities originally developed
for Project West Ford. Lincoln Experimental Terminal-1 (LET-1) was a transportable
ground terminal housed in two vehicles capable of being towed as {railers. One vehicle
contained the antenna and RF equipments, The second vehicle continued the signal
conditioning and processing equipment necessary for signal generation, modulation
and up conversation to IF, The LET-1 terminal was located adjacent to the Lincoln
Laboratory's Facilities in Lexington. The other two LET terminals consisted of a
LET-1 type signal processing van utilized with existing antennas and RTF equipment.
LET-2 employed the 60-foot West Ford antenna and X-band RF equipment at Millstone
Hill. LET-3 employed the 30-foot antenma and X-band RF equipment of the Army's

transportable Mark 1A terminal,

The LET-3/Mark 1A combination was initially deployed to Camp Roberts,
California for LES tests. After a few months it was moved to Ft, Monmouth, New
Jersey for alimited number of LES experiments and subsequent modification for tests

with the IDCSP satellites,
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Table 9-3, Participating Earth Terminals

Location Sponsor Antenna Date
Diameter (Ft) Installed
Camp Parks, California U. 8, Air Force 60 1961
Millstone Hill, Mass. .
! - - A

(West Ford) U. S, Air Force 60 1961
Lexington, Mass. (LET-1) U. 8. Air Force 15 1965
Millstone Hill, Mass.

(LET-2) U. 8. Air Force 60 1965
Camp Roberts, California

(LET-3) U. 8. Army Satellite) 30 1966

Commubnications
Agency

Tracking and VHF telemetry data was obtained primarily by the Camp Parks
and Millstone Hill (West Ford) terminals, The satellite launchings were provided by
the U. 8. Air Force,

The X-Band LES program was responsible for a number of gignificant contri-
butions to satellite communications technology. It proved the feasibility of building
solid state X-band transponders for operation in a communications satellite, A useful
communications capability was supplied even though satellite dc to RF power conver-
sion efficiency and RF power output were relatively low. The feasibility and perfor-
mance capabilities of electronically switched despun antennas were demonstrated, A
workable automatic magnetic spin axis torquing system for attitude correction was
exhibited. The performance potential available through the application of convolution
encoding and sequential decoding to satellite links was displayed. Frequency hopping
was shown to be a satisfactory means of multiple access having no stringent synchroni-
zation requirements and giving considerable protection against interfering signals.
Finally, the capabilities of both pitch-excited and voice-excited vocoders, when used

over a satellite link, were demonstrated. The former handled speakers at the
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satellite ground terminal while the latter allowed remote speakers, connected through

the normal switched telephone network, to use low rate digital satellite voice circuits,

9.2.2 System Description

The West Ford terminals contained conventional analog voice signal processing
and frequency modulation equipment while the newly developed LET terminals were
equipped for digital signal processing. As a result, the three LET terminals inter-
operated independent of the West Ford terminals, Individual terminal loop back tests
plus half and full duplex two-terminal operations were conducted, Extensive multiple
access tests were not performed due to the limited number of participating terminals
having compatible modulation and signal processing systems, However, the LET ter-
minal approach to modulation made multiple access a real possibility even for operation

with hard limiting satellites.

Operating frequencies for the X-band Lincoln Experimental Satellites are shown

8
in Table 9—4( ) By choosing the X-band frequencies for communications experiments,

it was possible to make use of ground terminal facilities previously developed for
Project West Ford, More important, however, it afforded the opportunity in accordance
with the program objectives, to conduct tests and develop experimental hardware

operating at frequencies internationally allocated for military satellite communications.

Table 9-4, X-Band LES Operating Frequencies (MHz)

Communications Telemetry*
Up Link Downlink Beacon
8350 7750 7740 237

*VHF tracking was also performed on this signal. A command system was
not employed.

The two West Ford terminals used conventional FM for their RF modulation
and frequency division multiple access when full duplex operations were conducted,

Signal processing and link performance for LET operations with LES are summarized
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in Table 9-5¢ ) () (10

The signal structure except for the frequency hopping feature

is sketched in Figure 9-1(9),

| In the LET system, the elementary channel symbol used was a sinusoidal pulse
200 ps in duration on one of 16 frequencies, The received pulse was detected by a bank
of 16 matched filters, This modulation~demodulation system was preceded by a con-
volutional encoder and followed by a sequential decoder, Information rates of approxi-

mately 200 bps, 5 kbps, and 10 kbps were achieved,

At the 5-kbps rate, an information bit was fed to the encoder every 200 us. The
encoder generated three parity check bits based on the 60 preceding information bits,
These four bits were employed to select one of 16 channel frequencies every 200 us,

At the receiver the match filter outputs were sampled every 200 us and ordered accord-
ing to magnitude, The seven samples of largest magnitude were fed to the sequential

decoder which recovered the original information bits,

Analogous operation occurred at the 10 kbps rate, In this case, one parity check
bit was generated for each input information bit and two information and two check bits
were used to select 1 of 16 channel frequencies, At the 200 bps rate, 24 successive
200 ps pulses carried the same information while the 25th pulse was a synchronization
pulse, At the receiver, the matched filter outputs were integrated over 24 successive

pulses before ordering the samples and decoding,

This signalling system guaranteed accurate transmission at low values of Eb/No°
To convert this into multiple-access, or anti-interference operation, the block of 16
channel frequencies employed in any 200 ué symbol interval was, itself, pseudorandomly
hopped over the 20 MHz bandwidth of the t-érminal and satellite RF systems, Since the
frequency hopping occurred only every 200 us, the signal acquisition and §ynchronization
requirements were modest as compared to a pseudonoise spectrum spreading system,
Acquisition was achieved automatically using time and frequency predictions obtained .
from a station clock and the satellite ephemeris, The desired synchronization was
achieved by transmission of a synchronizing pulse (i,e,, a 200-p s pulse that is frequency
hopped but carries no information) every 5 ms, A tracking 1001;"; integrated over many of
these pulses in sequency to achieve the desired timing and frequency accuracies of 5 us
and 625-Hz, respectively,

9-8



Table 9-5. Signal Processing for LET Operation with LES—4

Multiple Access Code Division through pseudorandom frequency hopping
of channel center frequency

RF Modulation MFSK employing 16 channel frequencies

Ground Demodulator E (1) of 6 dB required(z) corresponding to 43 dB/Hz

Performance ©  signal-to-noise density ratio for a 4. 8-kbps
voice channel

LET-1 Receive Carrier- 58 dB/Hz based on operationoat %;snchronous altitude,

to~Noise Density 2 watt satellite EIRP, & 100 K¢ receive system
noise temperature,

Margin Required for 5 dB

Link Degradation

Margin Available for 10 dB corresponding to 10 potential users of the same

Multiple Access type

Notes: (1) Energy per bit to noise density ratio

-3
(2) Gives probability of error of 10 = when matched filter detection and
sequential decoding of convolution encoded signal is employed,

(3) Represents LET receiver thermal noise alone. For code division
multiple access when almost entire satellite output represents inter-
ference, receive system noise temperature was raised a maxdmum of

(¢]
12.7 K.
INFORMATION é&
ANPUT __lcoNvoLUTIONAL 1-OF -16 - RF |
[ ENCODER "1 FREQUENCY SELECTOR l TRANSMITTER
1BiT/200 ps 4 BITS/200ps 200-ps PULSE ON
R
2BIT/200 s 10F 16 FREQUENCIES
\ ) TRANSMITTER
)i INFORMATION
RF 16-CHANNEL ] SEQUENTIAL OUTPUT
RECEIVER I DATA RECEIVER DECDDER S
200-us PULSE ON "ORDERED L1ST" 1BIT/ 260 us
F 16 FREQUENCIES ONCE EVERY 200 ps
'e PLUS E&ngE g 2BIT/ 200w

RECEIVER

Il Figure 9-1, Simplified Terminal (without Frequency Hopping)



The three alternate information rates provided corresponded, in order of
ascending rate, to transmission of two 100-wpm teletype channels, a pitch-excited
vocoder output (4. 8 kbps) plus the two teletype channels, or a voice-excited vocoder
output (9. 6 kbps) plus two teletype channels, respectively. The two vocoder systems
were provided in one unit capable of two modes of operation, Both modes provided
a high degree of intelligibility and speaker recognizability, In the pitch-excited
mode, a high fidelity input was required as provided by the high quality microphone
at the LET terminal, When operated at the higher data rate, the vocoder was used
in the voice-excited mode, allowing the use of a degraded input, including a "phone

patch" connection to the commercial telephone plant,

9.2, 3 SEacecraft

Characteristics of the communications-related subsystems of the LES-1, 2 & 4

spacecraft are given in Table 9-¢!1 & (11),

The LES-1 and 2 satellites were nearly
identical in all respects and the transponder, aboard zll three spacecraft, was
basically the same, A simplified block diagram of the transponder is shown in
Figure 9-2. A 60-MHz IF was employed which made double up conversion necessary
to avoid the need for narrow sideband separation filters at the 7, 8-GHz output

frequency,

LES-1 and 2 were designed to operate with their spin axis normal to the earth-
sun line, As a result, the spacecraft orientation relative to the earth varied making
a broad range of coverage by the satellite antenna pattern necessary, This was
solved through the 8-element switched array of antenna elements arranged in two
rings, The two 4-element rings girded the upper and lower hemispheres of the
satellite, respectively. Sensors operating at the wavelengths of visible light served
as inputs to the logic system determining spacecraft spin rate and earth direction,
The logic controlled antenna switching, A 2-throw switch selected the ring to be
activated while a 4-throw switch performed the despinning within an individual

ring, The automatic magnetic torquing system employed solar cells on the upper
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Table 9-6, BSatellite Characteristics

SATELLITE LES 1 AND 2 LES 4
Type X—Band — Switched array of UHF Telem. — Four 1/8—wavelength ¥—Band Xmit. — Switched single UHF Telem. — Circumferential
8 horn elements” in 2 rings monopoles ring array of B horn elements. gap hetween X—Band xmit. and
about spin axis X—Band Rec. — Biconical harn. receive antennas.
[%7]
é Number One One One One
=
E Xmit. Beamwidth (3 dB) Pencil Beam a minimum of Omnidirectional Pencil Bearn 23° wide at minimum Toroidal pattern of greater than
£ about B0° wide including dimension earth coverage width.
switched beam pointing errors.
Gain Xmit. — 3.1 dB 0dB Xmit. — 10.6 dB 1.4 dB in equatorial plane of
Rec. — 3.7 dB Rec. — 4.4 dB satellite
Frequency Band X—hand X—band
Type {F transtation hard limiting IF translation hard limiting
Bandwidth (1 dB} 20 MHz 20 MHz
Number One One
@ | Receiver —
w Type front end Down conversion mixer Down conversion mixer
=
fj Front end gain No Data No Data
E System Noise Figure 16 dB 2dB
Transmitter
Type Up converter output radiated * Up canverter output radiated
Gain No Data Nop Data
Power out 115 mW 230 mW
EIRP —7 dBW 3 dBW
Stabilization
Type Spin with autonomous magnetic torquing of spin axis Spin with autcnomous magnetic torquing of spin axis
@ Capability LES—2 settled to 12° = 7° from perpendicularity to satellite—sun line Torquing incperable due to unplanned orbit
w
S [PoworSowree ___ |
5 Primary Silicon sotar cel! array providing at least 27 watts at launch Silicon selar cell array providing at least 40 watts at launch
": Supplement Nona None
<L
5 Comm. Pwr. Needs No Data No Data
Z
E Size Polyhedron 24 in. wide between opposite square faces 10—sided cylinder approximatety 25 in. high and 31 in. across
Weight 69 tbs. for LES—1 and 82 Ibs. for LES—2 116 Ibs.

*Each horn was terminated in a diverging lens.




and lower halves of the satellite to excite aluminum windings on four torquing rods
mounted parallel to the spin axis. The onboard telemetry system utilized direct

binary phase shift keying of a UHF carrier. No command system wasprovided.

% %

COMMAND BEACON
RECEIVER SIGNAL
IF up up
MIXER |1 sueliFier lconvenTer CONVERTER

G )

AMPLIFIER
AND X2

| . DUAL
AMPLIFIER OSCILLATOR _'

Figure 9-2, LES X-Band Transponder

LES-4 was designed to maintain its spin axis perpendicular to the orbital
plane, This allowed all antenna elements to be arranged in one switched ring providing
a higher gain. Visual sensors served as inputs to two different antenna-pointing logic
systems, One system operated much as that on LES-1 and 2 measuring spin rate
and determining direction of the earth center once per revolution., The second
measured earth direction at one point in the orbit and time to travel to a second
known point in the orbit. Assuming a circular orbit, this allowed predictions of earth

direction to be derived as a function of orbital position.

The transponder was the same as that on LES-2 except for changes in the
erystal mixer, IF amplifier, directional couplers, and power monitoring circuits. An
isolator was eliminated, line lengths reduced, and connectors matched at operating
frequencies. These changes increased transmitter power by 3 dB and suppressed
spurious frequencies, The autonomous magnetic torquing system generated two

orthogonal axes in inertial space and measured spin axis orientation relative to these
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axes once per orbit at points, 90° apart, where the satellite orbit intersected these
fixed axes. LES-4 also included a radiation experiment to measure spatial and
temboral variationg of the energy spectrum of trapped electrons., The spectrum was

measured in five energy ranges from 130 keV to 4 MeV,

9.2.4 Ground Terminals

Among the terminals listed in Table 9-3, the Lincoln Experimental Terminals

were the major stations involved in experiments with the X~band Lincoln Experimental

LET-1 and LET-2 performed most of these tests. The characteristics

A9 (12)

Satellites.
of LET-1 are summarized in Table 9- . Characteristics of the existing
Millstone Hill antenna and RF equipment employed in LET-2 were discussed in the

description of Project West Ford ground stations in Section 5.4. A block diagram

of the LET-1 system is shown in Figure 9-3(9).
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Figure 9-3. LET System
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Table 9-7. Characteristics of LET-1 Ground Ter_minal

Type Cassegrain
Aperture Size 15 ft. diameter
g Receive Gain 48 dB
% Efficiency 50 percent
-«
Rec, Beamwidth 0.58° at 3 dB pts.
o £ Type Preamplifier cooled parametric amplifier
&9
¢ % { Bandwidth 20 MHz
g &
1~ Noise Temperature 100°K at 90° elev. in clear weather
:‘é » Type Amplifier Klystron
% £ | Bandwidth 20 MHz
& & | Amp. Pwr. Out 10 kw
I
—:‘% e Type computer-aided monopulse autotrack
g
ﬁ ~ | Accuracy no data
I
=
= “E % G/T 28 dB/°K *
et
& 8 8 |ERP 118 dBm *
=
§ = |Transmit Feed right hand circular
B ®
A B |Receive Feed left hand circular
1
:ct%' g |Radome none
iy
H 2 | Type Facility transportable in two trailers **
Notes: * A derived value based on data available.

** An electronics vehicle and an antenna vehicle,

As has been indicated, LET-1 was contained in two vehicles, The electronics
vehicle was a modified low-bed commercial van which contained the signal processing
equipment, a communications and antenna control console, a prime power generator

and its fuel, an air conditioner, and storage for the antenna panels. The second
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trailer, called the antenna vehicle, contained the transmitter and its heat exchanger,
a refrigerated parametric-amplifier receiver, low-level microwave equipment, the
antenna backup structure, feeds, and servo-mechanism equipment, The use of cir-
cularly polarized antenna feeds made the terminal compatible with the circular polari-

zation employed by the X-band antennas on LES-1, -2, and -4.

In addition to its signal processing, the LET system included another novel
innovation, It incorporated a small general purpose digital computer (UNIVAC 1218)
as an integral part of the communications terminal. The computer system was
agsigned four major tasks. It derived pointing angle inputs to the antenna servo system.
This computation also produced range and Doppler estimates for use in time and
frequency synchronization. The computer generated displays for terminal operators
and provided flexible operating controls. Further, it handled vocoder and teletype

message traffic multiplexing/demuitiplexing.

9,2.5 EgEeriments

Experiments conducted during the X-band portion of the LES program may be

(1) (4) (9). The automatic

grouped into six major categories as indicated in Table 9-8
magnetic torquing experiment was a success on LES-2 where, after several months,
the spin axis settled into an average 12° position away from perpendicular to the
satellite-sun line. The spin axis oscillated +7° about this position with a period of

135 days(l),

Automatic magnetic torquing of the spin axis could not be accomplished
on LES-1 and -4, however, due to the tumbling mode assumed and improper orbit

respectively.

The space radiation experiment was conducted on LES-4 exclusively., With the
highly elliptical orbit attained, LES-4 supplied extensive data on the energy spectrum
of trapped electrons in five energy ranges from 130 keV fo 4 MeV and at altitudes

from 100 to 18, 200 nautical miles (1).

Five solid state detectors were employed,
A sixth detector was continually exposed to a source of known intensity and served
as a calibration sensor such that the degradation of the five detectors due to the

space radiation environment could be determined. Three of the five detectors were
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shielded silicon cells while the other two were CdTe thin film cells, Results on

the CdTe cells, as constructed, indicated they could not satisfactorily withstand a

(13)

Farth albedo measurements were also made as an additional

(14) (15)

space environment

experiment on the earth environment

Table 9-8, Summary of X-Band LES Experiments

Program
Experiment Objective Nature of Activity
Satisfied*
1. LET Terminal & Signal 6. 788 Evaluate performance of antenna, RF
‘ Processing ! components, & signal processing system.
2. Satellite X;dBand 1&2 Demonstrate feasibility of solid state
Transponder satellite transponders for operation at
X-Band
3, System Performance 1,2,6,7&8 Measure LES/LET capability when operated
as a communication system
4, Despuh Antenna 3 Study antenna switching as a method of
antenna despinning in spin stahilized satellites
5. Space Radiation Environ- 5 Determine temporal and spatial character-
ment istics of near earth space radiation
6. Automatic Magnetic 4 Evaluate feasibility of magnetic torquing
Torquing of Spin Axis for automatic attitude alighment of spin
stabilized satellites.

*Program objectives are numbered and defined in Table 9-1,

The despun antenna experiment was carried on all three X-band satellites. On

LES-1, the switched antenna functioned as expected during most of the first 10

)

orbital revolutions until conversion to the 60~rpm tumbling mode was cornpleted(16

On LES-2 operation was satisfactory and in agreement with expectations. The use
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of conventional optics at visible wavelengths in conjunction with logic initially designed
for IR sensors resulted in some anomalous operation(l). Near satellite sunrise and
suﬁset, the logic tended to lock on the sun rather than the earth, Moreover, the logic
tended to point antennas toward the middle of the illuminated crescent rather than at

the middle of the earth, These difficulties were not crucial as the ground sites
operated with daylight at both transmitter and receiver. On LES-4 the antenna system
which measured earth direction during every satellite rotation also operated essentially
correct, Operation occasionally broke up for typically tens of minutes in a 8-hour

(14)

pass due to a defective circuit The second switching logic system on LES-4

could not operate properly at all since the satellite was not in a circular orbit,

Measurements on the LET system included evaluations of the performance of
RF equipment, antenna system, and signal processing system. In the two former
areas, transmitter output power, receiver noise temperature, system bandwidth,

a 7). These

and antenna autotrack capability were particular parameters of interest
measurements demonstrated performance in agreement with specified values. Per-
formance of the signal processing system was demonstrated in thack-to-back"
testing. Both the voice-excited vocoder mode using remote speakers connected to the
terminal through the commercial switched telephone network and the pitch-excited
vocoder mode using local speakers displayed satisfactorsr operation. In both modes,
familiar speakers could easily be detected. The frequency hopping, MFSK, and
convolution encoder-sequential decoder combined signal processing system displayed
a threshold in close agreement with the 6 dB ]?]b/NO expected (18). Theory and
practice were in almost perfect agreement when 0.3 dB of loss due to non-ideal
matched filters and another 0.3 dB of loss due to non-ideal pulsed signals (i.e.,

the switching time of the frequency synthesizer was 2-4 us) were taken into considera-

(M

tion. The one-way delay induced by the sequential decoder was about 200 us' ",

The satellite X-band transponder received considerable operational evaluation
on LES-2 and LES-4. Satellite EIRP, receiver noise figure, bandwidth, frequency

stability, and beacon performance were all monitored and found to be the same as
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19)

measured during prelaunch checkouts™ ', LES-1's transponder was operated for a

ghort time until the satellite assumed its tumbling mode and the transponder performed
- 6

as expected(l ).

The satellite system performance tests and their results are summarized in
Table 9-9 (9) (11) (16) (19) (20). These tests were conducted with LES-2 and LES~4.
Specific results mentioned in the table are for operation with LES-2,

9,2.6 Operational Results

Since these were experimental satellites, no operational traffic was carried.
The general performance of all spacecraft was good and in agreement with expecta- -
tions. The solar array output on LES-1 had degraded significantly by September of
1965 due to the satellite being left in a circular orbit within the Van Allen Belt (19).
With LES-2 being in an elliptical orbit having an apogee out of the area of severe
Van Allen Belt radiation, its solar array did not show significant degradation until
mid 1966(6). Even then the difficulties were not severe enough to impair transponder

or telemetry operation,

The Lincoln Experimental Terminals provided generally reliable performance.
One significant initial difficulty was due to the installation of the general purpose
computer, Its inclusion resulted in certain equipment malfunctions being difficult to
localize because '"everything was so connected, n®) When this became clear, special
troubleshooting programs and techniques were designed, With these techniques,

the computer became an asset since it could test all interconnecting equipment.
9.3 UHF SATELLITES

9.3.1 General Degcription

On October 2, 1965 a Deputy Secretary of Defense memorandum titled "Tactical
Satellite Communications Research and Development' inagurated the U, S, military's
TACSATCOM experimental program, This memorandum instructed the military
departments to initiate studies in R&D to hasten the use of satellite repeatera for

tactical communications, Experiments with the UHF Lincoln Experimental Satellites
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Table 9-9, Satellite System Performance Experiments

TYPE EXPERIMENT NATURE OF RESULTS OBTAINED

1) FM Volce & Music Monostatic plus half and full duplex bistatic tests
conducted by Camp Parks and Millstone Hill (West Ford).
‘Quality was excellent.

2} Vocoded Voice & LET-1 conducted tests. Transmitter power necessary

TTY (Full duplex) to attain receiver threshold measured as function of
satellite range. Measured values generally agreed*
with calculated theoretical values, **

3) Vocoded Voice & TTY LET-1 & LET-2 conducted tests, LET-2 transmitter

(Full duplex) adjusted 5 dB below that of LET-1. Measuared performance
agreed well with theoretical performance based on pro-
jected up and down link parameters, hard limited satellite
transfer function, and theoretical receiver threshold. **

4) Interference Sensitivity With either interfering tone or wide-band noise, no inter-

. ference to normal transmissions detected until inter-
fering signal substantially exceeded communications
signal on satellite up link, Communications failed only
when interference forced the communications downlink
signal to drop below receiver threshold,

§) Frequency Spread vs. Spreading from frequency hopping varied over 2.5, 5, 10,

Processing Threshold ahd 20 MHz, No change in signal processing threshold
occurred except at the 20 MHz rate. At this rate, band-
pass limitations of the satellite and terminals caused some
degradation.

6) Vocoder Performance For operation above threshold, both vocoded modes .
displayed essentially the same performance as found in
LET "back-to-back' tests,

7) Vulnerability to Intelligent Performance compared to pseudonoise for a hroad class
Hostile Jamming of jammers, Result3 classified.

Notes: * Deviations caused by: satellite power varying with temperature, age and inexact aiming of
satellite antennas; terminal receive noise temperature varying with weather conditlions and
antenna elevation angle; path loss varying with weather conditions, satellite range, and antenna
elevation angle; terminal calibration changing with age; and satellite and terminal bandpass
not belng entirely flat,

** Theoretical threshpld occure at a received power to noise density ratio (Pr,fNo) of 43 dB based
on an Eb/No of 6 dB and a 4, 8 Kbps vocoder data rate, This compares to a P‘./N0 of 52 dB

required to obtain comparable quality on a single FM voice channel.
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(LES) constituted the initial phases of this program. The program was continued by
the successful launching of TACSAT I in early 1969 (see Section 14). Specific objectives
of the satellites and earth terminals included in the LES portion of the TACSATCOM

21
program are listed in Tabhle 9-—-10( ),

Table 9-10, UHF LES Experiment Objectives

Number Description

1 Develop and demonstrate space hardware operating in the miliary
UHF frequency bands

2 Develop and demonstrate mobile tactical terminals operating at the
military UHF frequencies

3 Investigate propagation characteristics of UHF satellite links

4 Determine the extent of RF interference to a UHF tactical satellite
communications system

5 Study electronic switching in despun anternas

6 Evaluate high efficiency RF transmitters

7 Demonstrate automatic onboard satellite attitude control

8 Display automatic onboard satellite stationkeeping

9 Study the space radiation environment

Three UHF Lincoln Experimental Satellites were launched as part of the

TACSATCOM program as indicated in Table 9-11 8% (#3) (4) (29),

launched along with LES-4, Oscar 4, and OV2-3 as indicated in the ""General

LES-3 was

Description' of the X-band LES (see Section 9,2.1). When the improper injection
into a highly elliptical inclined orbit occurred, LES-3 was left spinning at 140
(14)

RPM with its spin axis inclined about 15° to the orbital plane This was in
contrast with the planned perpendicular orientation. Despite the unplanned orienta-
tion, LES-3 operated as designed and, in accordance with its sole mission ohjective,
provided the signals necessary to carry out UHF propagation measurements. Atmos-
pheric drag, resulting from the low perigee of this satellite's highly elliptical orbit,
eventually caused the orbit to decay but not before all desired testing had been

successfully completed.
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12-6

Table 9-11. UHF Spacecraft

Satellite LES-3 LES-5 LES-6
Manufacturer & Sponsor Lincoln Laboratories and U. 8. Air Force
Launch Date 12/21/1965 7/1/1967 9/26/1968
Launch Vehicle Titan ITI C
% Apogee (mi) 20, 890 20,894 22,236
§ Perigee (mi) 124 20,692 22,119
£ | nclination 26. 6° 7.29 3°
§ Period (min. ) 589. 6 1,319 1,431.2
Formal spacecraft In orbit but a failure| In orhit and active
observations terminated | in the final power with output power
Status in late summer 1967.

Orbit decayed 4/6/68
and satellite was des-
troyed.

amplifier driver
stage caused radia-
tions to cease in
late May 1970.

reduced due to solar
array degradation.
Stationed at approxi-
mately 40° West
longitude.

stationkeeping maneuvers are among causes of parameter changes,

NOTES: *At initial injection. Atmospheric drag, solar pressure, and attitude and




LES-5 along with its companion satellites, IDCSP 16 through 18, DATS 1 and
DODGE, constituted the payloads successfully launched by Titan III-C Vehicle No. 14

into planned near-synchronous, near-equatorial orbits(zl) (26) .

The three essentially
jdentical IDCSP satellites, DATS 1 and DODGE were all part of the Initial Defense
Communication Satellite Program (see Section 12), IDCSP 16-18 augmented two
earlier successful launches of seven and eight IDCSP satellites respectively and
completed the first U. S. global experimental military communication satellite system.
DATS 1 was electrically identical to the IDCSP satellites but employed an experi-~
mental electronically despun antenna, DODGE was intended to study a number of

advanced gravity-gradient stabilization techniques at near-synchronous attitudes

and to take color TV pictures,

LES~5 and the ground complex employed with it provided experiments aimed at
meeting all of the objectives listed in Table 9-10 with the exception of Items 3, 6
and 8(21}. The satellite was utilized, during its 3-year (approximate) active lifetime,
by tactical terminals of all the U.S. armed services and NATO forces. In general,
the experiments conducted allowed all of the intended objectives to be accomplished.
These successes were attained in spite of a number of minor spacecraft failures,
Difficulties included predictable daily periods of abnormally high rate receiver timing
signals to the command system and Radio Frequency Interference (RFI) Experiment,
predictable yearly periods of reduced receiver sensitivity, failure of one of four
gun sensors providing inputs to the automatic attitude control system, and a 1, 7 kHz

frequency shift in one of two transponder local oscillators resulting in a correspond-

ing change in frequency translation,

LES-6, OV2-5, OV5-2, and OV5-4 were successfully launched into planned
orbits by Titan I1I-C Vehicle No, 5(21) (27). The launch vehicle's Transtage left
LES-6 in an essentially synchronous equatorial orbit. The satellite's onboard coeld
ammonia thruster system was used for final adjustment into a stationary orbit with
(28)

the spacecraft positioned at about 86° West longitude Ov2-5 and OV5-2 were

launched to collect data on the space radiation environment while OV5-4 provided
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an experiment on heat transfer in a liquid under zero-g conditions. LES-6 and the
ground terminals operating with it provided experiments 2imed at meeting all of the

objectives listed in Table 9-10.

Shortly after orbital injection it was observed that the satellite was gpinning
about an axis offset about 2. 2° from the axis of symmetry of the cylinder (i.e.,
nutating). Additionally one solar panel, lying in the plane defined by the actual
spin axis and the axis of symmetry, was providing a gseverly reduced power output(zg).
The exact cause of these seemingly related difficulties was not determined. It was
hypothesized that the satellite unbalance and resultant spin axis offset was produced
by about 1.1 pounds of weight added to the outside surface of the cylinder. Ome

theory suggested that an object was caught on a dipole antenna and was shadowing the

solar panel, The net effect was to make the automatic attitude control system unusable

and produce a spin rate modulation of the solar array dec power output that resulted

in a similar modulation of the RF power output.

A further difficulty was encountered about a week after launch when a relay
flip flop failed in the Earth Position register of one of the satellite's two antenna

(29)

switching logic systems However, the second switching logic system remained
in good working order and was able to successfully handle antenna switching except
during periods of darkness of the subsatellite point, The satellite was allowed to
drift from its initial position to about 93°W longitude and was maintained at this
location by the automatic stationkeeping system for several months. During these
initial months in orbit, the satellite was employed by tactical terminals of all of

the U.S. armed services in tri-service tests and all of the objectives listed in

Table 9-10, with the exception of Ttem 7, were successfully accomplished.

On July 23, 1969 a program was initiated to move LES-6 further eastward to
about 40°W longitude so that the NATO countries of Europe could view the spacecraft
The satellite arrived at its new station in the beginning of December 1969(31). It
has been maintained at approximately this location until the present and continues to

be employed by the NATO countries and the U, 8. armed services,
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The major satellite communications ground station involved in testing with all
three UHF Lincoln Experimental Satellites was the Lincoln Laboratory's terminal
loéated on the roof of Building B at the Laboratory in Lexington, Massachussetts(zg)(32).
This terminal employed a 30-foot parabolic antenna and initially came into being
in 1965. It was subsequently upgraded in performance capabilities. Lincoln Labs
supplemented this terminal in late 1966 with a small truck-based UHF terminal

6
employing a 12-dB gain helix antenna( ).

This terminal was designated LET-4 as
it was preceded by three transportable SHF Lincoln Experimental terminals (see

Section 9.2.1). LET-4 was a major participant in LES-5 and LES-6 testing.

In addition to these terminals, a host of mobile terminals built by the three
major 1, S, armed services used the satellites, These included fixed wing aircraft,
helicopter, surface ship, submarine, van, small truck, jeep, and manually carried

(33)(34)(35)(36)

terminals The latter included small terminals that can be carried by

one man and larger terminals carried by a team of men,

Fixed wing aircraft outfitted with these terminals included B-52s, C-135s, and
P-3s. Many of the aircraft tests used airplanes based at Wright Patterson Air Force
Base in Ohio. Helicopters provided with terminals included the UH-1F and UH-1D
aircraft. Surface ship terminals involved in tests included the USS Providence, USS
Guadalcanal, USS Threadfin, USS Picuda, USS Pocono, USCGC Glacier, and USS
Leahy. Submarine terminals participating in tests included the USS Tullibee and USS
Thornback, Army tests of vehicular and manually transported terminals were
conducted at Fort Monmouth, New Jersey and Fort Clayton, Panama Canal Zone among
other places. Various fixed or semi-fixed stations making some use of LES-5 and LES-6
were located at Rome, New York; St. Petersburg, Florida; San Diego, California;

New London, Connecticut; Patuzent River, Maryland and St., Inigoes, Maryland,

Spacecraft telemetry was obtained by Lincoln Laboratory facilities at Camp
Parks, California; Millstone Hill, Massachusetts; and Lexington, Massachusetts,

Additional locations receiving special installations of telemetry equipment included
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Cape Kennedy, Florida and Guam Island. The main command station was Lexington,

Massachusetts, Spacecraft launchings were provided by the U. S. Air Force.

The UHF LES program resulted in numerous advancements in technology
available to support the design of satellite communications systems. It significantly
advanced the state of knowledge of UHF propagation and the UHF noise environment
including RF interference. In particular, the studies characterized propagation and
noise pertinent to systems involving small mobile aircraft, ship, vehicular and
manpack terminals. Workable experimental tactical communications terminals,
including antennas and modemsg, were developed and demonstrated. The feasibility
of high efficiency UHF satellite transmitters operating directly from an unregulated
solar array power supply was displayed accurate autonomous attitude control of
spin-stabilized near-synchronous satellites was exhibited. The feasibility of autonomous
stationkeeping and station changing was demonstrated. These two automatic control
concepts could ultimately greatly simplify the need for ground control operations
and ground tracking requirements, This may become important as the number of
satellites in orbit increases and the separation between them decreases. In addition,
an electronically switched despun antenna system successfully operating at UHF

frequencies was displayed.

9,3,2 System Description

Numerous linking arrangements were devised among the many terminals
participating in tests. The tests included individual terminal loop back, two terminal
hald duplex, fult duplex, and multiple access tests, Many of these tests centered
upon the Lexington terminal, The orbit of the LES-5 spacecraft supplied 5 days
of vigibility at Lexington out of the 11 required for its slight west-to-east drift to
produce one revolution of movement relative to a given spot on the surface of the

h(ZS). The earth visibility supplied by LES-6 in its initial stationary location

(33)

eart

is shown in Figure 9-4
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Operating frequencies for the three UHF Lincoln Experimental Satellites

(14 (21)(33), The choice of the UHF frequency band for these

are shown in Table 9-12
studies was governed principally by the antenna problem and the spectrum alloca-
tions that were available for military use. In the very constrained physical environ-
ment of a small mobile terminal, and in particular in the environment of an

aircraft, it is highly desirable to use simple antennas which do not require accurate
pointing. Given this requirement, a relatively low frequency is attractive since

the receiving cross section of a dipole antenna is proportional to the square of the

(33). The limitations on the lower end of the spectrum are governed by

wavelength
noise background and spectrum availability

Table 9-12. UHF LES Operating Frequencies (MHZ)

Communications

g .

atellite Uplink Downlinl Beacon Telemetry

LES-3 - - 232.9 No data
255-280(1)

LES-5 956. 1(2) 228,2 228,43 236.75
290-315(1)

LES-6 302.7(2) 249.1 254,14 236.75

Notes: (1) Frequency band over which RFI measurements were made,
Command receiver operated off RFI receiver.

(2) Center frequency of communications transponder.

The major approaches to signal processing centered upoil a triple frequency-
time diversity technique conceived by Aerospace Corporation and developed by
Electronic Communication Inc., and the frequency hopped Tactical Transmission
System (TATS) developed by Lincoln Labs, Conventional analog FM and frequency
division multiple access were also occasionally employed. Signal processing and
link performance when the frequency diversity technique was employed on a channel

perturbed by Gaussian additive noise are summarized in Table 9*13(33)(34).

The triple diversity modem handled 60 or 100 word per minute teletype using an
asynchronous baudot code. Incoming teletype messages were reclocked to obtain a

uniform bit stream which could be split into three chips per bit. The three chips
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were sequentially transmitted on three different frequencies. There was a constant
frequency separation between the three "Mark" and three "Space' frequencies. The
data demodulator used a phased lock loop to derive ship timing such that the proper
pair of matched filters were sampled at the proper time, The total energy present in
the three mark channels was compared with the total energy present in the three
space channels for each bit time to decide if a "Mark' or ""Space'' had been sent.

This system was designed specifically for aircraft and with its 100-kHz handwidth
provided good resistance to multipath fading down to an elevation angle of about 4° to
the satellite for an airplane flying at about 30, 000 feet. The triple diversity also
provided protection against RFL

Table 9-13. Signal Processing Using Frequency Diversity

Multiple Access Frequency Division but frequency-time diversity(l) provides
some resistance to interference from other users in same
frequency band.

RF Modulation FSK

Ground Demodulator|Ey/ Néz) of 12 dB required(g) corresponding to 31 dB/Hz
Performance signal-to-noise density ratio for 75 bps TTY channel

C-135 Receive 44 dB based on operation with LES-5 at maximum range and
Carrier-to-Noise lutilization of blade aircraft antenna with 1-kW transmitter (4)
Density and receiver having 4.5 dB noise figure

Link Margin 13 dB

NOTES: (1) Each bit divided into three chips. Each chip transmitted successively
at separate frequency.
@) Energy per bit-to-noise density ratio
(3) Gives probability of error less than 10-3 based on matched filter
detection and integration over outputs of each of three filters
representing '"Mark' and "Space'’ respectively.

4) Spacecraft transponder ted at 100-k dwidth i
4) sg.turate o ant ipn(l)c Sigﬂgﬂera at 100-kHz bandwidth and marginally
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Signal processing and link performance when the TATS modem was employed
on a channel perturbed by Gaussian additive noise are summarized in Table
9-14(33)(37)(38). A functional block diagram of a TATS modem is given in Figure
9-5 (37). This modem was specifically designed for the military tactical communica~
tions environment and continued to be used in extensive testing on TACSAT 1 (see
Section 14.5). It was designed to allow a high level of random multiple access with
a minimum of acquisition and synchronization difficulties, provide a high degree of
resistance to RFL and supply good performance in the face of multipath fading. As

designed, it provided little resistance to jamming.

Table 9-14. Signal Processing Using TATS

Multiple Access Code Division through frequency hopping of channel center
frequency
TATS Demodulator Eb/No(l) of 11 dB required(z) corresponding to 45 dB/Hz
Performance signal-to-noise density ratio for a 2.4 kbps vocoded voice
channel
C-135 Receive 55 dB based on operation with LES-6 at maximum range al%g)
Carrier-to-Noise| utilization of blade aircraft antenna with 1 kW transmitter
Density and receiver having 4. 5-dB noise figure.
Link Margin 10 dB

Notes: (1) Energy per bit-to-noise density ratio
(%) Gives probability of error less than 10~3 based on matched filter
detection and Reed-Solomon coding of data
(3) Spacecraft transponder operated at 500-kHz bandwidth and marginally
saturated by uplink signal.

The basic signaling waveform was a Tc second sine wave pulse on one of eight
frequencies spaced at 1 /Tc—Hz increments, Six bits of information corresponding
to sixty-four possible states of the input word were coded into a sequence of seven such

(37)

pulses using the (7, 2) octal Reed~-Solomon code An additional fixed frequency
pulse started each seven pulse code word to aid in time and frequency synchronization.

Therefore, the time to transmit each code word was 8 Tc seconds. Since each code
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each word contained six bits of information, the data rate was 0. "||'5/Tc= bits-per-
second. At the two data rates handled by the modem (i.e., 75 or 2400 bits/sec),

Tc was 10 msec. or 312, 5 us, respectively,

DATA MESK /o FREQUENCY MODEM
o™ ENCODER I aNDS o2 SYNTHESIZER oUTPUT
FREQUENCY -
HOPPING
COMMANDS
HOPPING-~
PATTERN ] PATTERN
SELECT GENERATOR

la) TRANSMITTER

MODEM DE-HOPPED DATA
iNeuT T MIXER SIGNAL DECODER ouT
FREQUENCY |, ",‘,%‘;"T'E'gﬂ‘ SYNCHRONIZATION
SYNTHESIZER GENERATOR AND TRACKING
PATTERN SELECT
{b} RECEIVER

Figure 3-5. TATS Functional Block Diagram

At the receiver, the amplitude of the envelope out of each of eight matched
filters was sampled and quantized to one of 16 levels at the end of each Tc-sec

(37)

pulse interval Seven sets of these measurements, corresponding to one code
word, were used to generate 64 numbers related to the likelihood that each of the
64 possible code words was the one actually being received. The maximum likelihood

6-bit information word was outputed each 8 Tc seconds.

Bandspreading was accomplished by generating a new base or carrier fre-
quency in each pulse interval to which the frequency selected in that interval by

the input code word was added(37).

The carrier hopping pattern consisted of a
repetitive sequence of seven frequencies chosen from a larger set of possible

carrier frequencies. Since the modulation frame contained 8 pulses or chips, the



carrier frequency for each chip position within the modulation frame was cycled
through the carrier hopping pattern., This guaranteed frequency diversity in the

syhc measurement in the presence of selective fading.

The hopping patterns were selected such that each pattern used the whole trans-
mitted bandwidth (i.e., 500 kHz or 10 MHz as selected) and the number of pattern
overlaps between members of the selected set were small for all possible time
shifts. The first property provided the diversity necessary to combat frequency
selective fading due to multipath and RFI. The second property minimized the

possibility of decoder error due to channel cross-talk.

9.3.3 Spacecraft

Characteristics of the communications related subsystems of the LES-5 and
6 spacecraft are given in Table 9-15. See References 21, 32, and 39 through 42, A
block diagram of the transponder on LES-5 is shown in Figure 9-6 (39). The LES-6
transponder was basically the same as that shown for LES-5, Transponder fre-
quencies, powers and bandwidths were different. Additionally, the beacon trans-
mitter served as the third input to the antenna triplexer instead of the telemetry trans-

mitter. The latter employed a separate antenna for signal radiations,

The characteristics of LES-3 are not summarized in Table 9-15 since it did
not contain a communications repeater. LES-3 was built to provide an orbiting UH¥
beacon to be used for propagation measurements. It radiated 28.5 watts biphase
modulated by a 15-bit pseudorandom sequence clocked at a rate of 100 kHz 11)d4) .
Such a signal permitted detailed measurements of the multipath and fading character-
istics of the propagation medium,

LES-3 was constructed utilizing the frame, power system, and power amplifiers
designed for LES-1 and 2 and was similar in appearance to these satellites(l)(lg).
The most apparent difference was a lack of optical sensors and X-band antennas on
the triangular faces and the presence of a UHF monopole antenna projecting from the

top and bottom rectangular surfaces of the spin stabilized satellite. These surfaces
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Table 9-15,

Satellite Characteristics

Satellite L,ES-5 LES-6
Type UHF=-Array of 16 axial cavity backed UHF-Switched array of Telem-Monopole
slots in 2 rings and 8 full-wave deploy- 16 axial cavity backed stub extended from
able dipoles in 1 ring. (m Triplexer slots and 16 nxdal one end along line
w allowed communication xmit and hialf-wave extended of spin axis,
g receive plug telom. to usce same antennn dipnles. ) foth slota
g systom and extended dipoles
E in ¥ rings of 8 eloments
) wuch,
Number One One me
Xmit eamwidth Torroidal puttern about 177 wide Peneil beam 349 x 479 Omnidirectional
3 dny
Gain ¥mit - 2.0 dB; Mee - 2,2 dR Xmit - 1013 Ree - 10 dB | B3
IFrequency Bard UHTF uar
Type 11 translation hard limiting 11 translntion hard limiting
Bandwidth (3 dB) 100 or 300 Kllz switchable on ground 100 ot 500 K11z switchable un ground command
commaned
Number One (o
" « | Type Front End 1lwn Comversion Mixer IMiwn Conversion Mixer
QG
"
i) -E TFront End Gain N data No data
B 3]
L ) .y
§| = | Pyntom Notae 3.6 dB 2.6 db
Figurc
w | Tvpe Tour hybrid suommed transister ampifiers|| Eight hybrid summed transistor amplifiers in
& in final stage final stape
E Gain About 25 dB for tranamittor power About 10 dD3 for final stage and 60 dB for total
F amplifier chain xmit chain
™
| Power (wt 42 walls 122 watt at kaunch
LIRT 17 JdBW 20 dBW at launch
Type Spin with autonomous magnetic attitude Bpin with putonomous maghetie or gas thruster
control system attitude control system plus autonomous station-
.g‘ keeping using cold ammonia gas or pulsed plasma
‘5 thrusters
2]
=3 | Capability Spin axis was kept within 2. 6" of orbit Aulomatic attitude control inoperable because of
g normal apin nxis misalignment. (2) stationkecping dis-
o played capability of keeping satellite within about
g 2 of desired longitude,
|
T
& |a g Primary Silicon rnlar coll nrray providing 146 Siljicon solor cetl array providing 220 watts at
= % E watts at launch launch
g a
E & 9 [ supplement None None:
o

Communication Poweor
Needs

Approximately 70 watts

Approximately 180 watts

Size

Cylindrieal approximately (6 inches in
length and 48 inches in diameter

Cylindrical approximately 66 inches in length
and 48 inches in diameter

Weight

225 Iba

60 by

Notes: (1)

each ring,

Elements in 2-ring arrays employed in eollinear pairs maude up of one clement from
Slot arrays driven in phase quadrature with extended tlipole areays.,

This

in combination with the orthogonal polarization of the two types of arrays produced a
circularly polarized antenna system.

()
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RFI INSTRUMENT SPACECRAFT BEACON-SIGNAL
AND OMNIDIRECTIONAL TRANSMITTER
COMMAND RECEIVER ANTENNA 1228 43 MH 7|
[ [
Y L
BROADBAND FILTER TRANSPONDER/ANTENNA FOWER
- AND RF AMPLIFIER [ INTERFACE CIRCUITRY [#— AMPLIFIER {FA) - E
{255 TO 280 MHz} (TRIPLEXER}
4 4
Y
NARROWRAND FILTER TELEMETAY — SIGNAL NARROWBAND
AND RF AMPLIFIER TRANSMITTER RF FILTER
ity = 285.1 MHz} (236.75 MHz) i, - 22B.2 MH2]

3

4 LINEAR IF AMPLIFIER,

NARROWBAND FILTER,

AND LIMITER
MIXER - f, - 32.6MHe, »! MIXER
BW, = 100 MHz,
)

BW,, = 300 kHz) i

LOCAL OSCILLATOR ALTERNATE LOCAL OSCILLATOR

(222.5 MHz) COMMAND DETECTOR {195.6 MHz)

Figure 9-6, LES-5 Transponder Block Diagram

carried no solar cells. The antenna system produced a toroidal pattern with a
measured gain of 4-1/4 dB in the direction perpendicular to the spin axis. The

spacecraft weighed approximately 32 pounds.

LES-5 provided, in addition to the features indicated in Table 9-15, a solar
cell degradation experiment, an RF interference experiment, and experimental
switching logic for antenna despinning although no actual antenna switching was
performed(zn. The solar cell experiment included measurements on two 10-ohm cm,
silicon cells with 30-mil, cover slides, one 10-ochm cm. silicon cell with 6-mil.
cover slide, and two CdS thin film cells(13). The satellite RFI receiver had a 120~
kHz noise bandwidth and was designed to tune from 283 MHz to 253 MHz in 256 steps
of approximately 120 kHz each, dwelling at each step for 2.56 seconds(43), The

time for a complete frequency scan was approximately 11 minutes. In the fixed
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frequency modes, the RFI instrument also functioned as the command receiver for
the spacecraft, The onboard experimental switching logic was included to obtain

data for the design of the despun antenna system flown on LES-6,

LES-6 provided, in addition to the features indicated in Table 9-15, a solar
cell degradation experiment, space radiation environment measurements, an
earth albedo experiment, an RF interference experiment, precision spin period
measurements, and a communications transmitter making highly efficient use of

(21)

available de power The solar cell experiment studied radiation effects pertinent
to solar power arrays made from the standard silicon cells normally used and effects
on experimental cells of various types. The latter included lithinm-doped cells

made from silicon grown by crucible, float zone and Lopex techniques; cells made
from silicon grown by the dendretic support process; cells manufactured by ion

(44)

implant techniques; CdS thin film cells, and Cd Te thin film cells The space

radiation experiment was designed to measure the trapped electron spectrum over the
range of 275 keV to 3 MeV(zl)(45). The earth albedo experiment measured the
reflected optical spectrum from the earth in 6 spectral bands from 0, 41 microns to

(21)

1. 00 microns The RFI experiment was very similar to that on LES-5 except

it measured interference in the band from 290 to 315 MHZ(43) . Precision spin
period measurements were a by-product of a special clock rate generator included
on LES-6 as part of the automatic stationkeeping system. The high efficiency trans-
mitter operated directly from the solar bus. The power amplifier load line was
adjusted to be coincident with the locus of maximum power points as the output from

(21)

the solar array varied with sun illumination and satellite life There was no
de-de converter losses in order to obtain proper regulated voltages and no unutilized

power for solar array radiation degradation margins,

9.3.4 Ground Terminals

The major station involved in UHF LES testing waa Lincoln Laboratory's
Lexington terminal. Early military terminals involved in the program were the

Electronic Communication, Inc., (ECI) terminals employed by the Air Force(aa}
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(35) developed by the Army.

and Navy and the Project East vehicular earth terminals
The ECI terminal was an experimental, off-the-shelf, single channel, low data rate,
teletype communication system that employed the triple frequency diversity ECI
modem. The U.S. Navy version of this terminal was nicknamed a LODUS terminal,
The U, S. Air Force version was designated the UHF terminal (ECI 521). The U. S,
Army's Project East equipments included two jeep, two 3 /4-ton truck, and one
26-foot van terminal., They were assembled from off-the-shelf commercial and

" military equipment and employed conventional frequency modulation for voice and

teletype communications. Block diagrams of typical Air Force ECI and Army 3/4-

ton truck terminals are shown in Figures 9-7 and 9-8 respectively.

With the experience gained from operating these early terminals, the U. S,
Armed Services went on to develop terminals specially designed for operation in
a tactical military communications environment. These terminals employed the TATS
modem, developed by Lincoln Laboratories and produced by Sylvania Electronics
Products Inc., as a major mode of communications. They are described in the dis-
cussion of ground terminals employed with TACSAT I (see Section 14.4), Character-
istics of the Lexington fixed terminal and a typical C-135 aircraft ECI terminal are

delineated in Table 9-16'%) G313 E6)E)

The linear polarization of the blade
aircraft antenna resulted in a 3-dB link polarization loss since all of the UHF
Lincoln Experimental Satellites had circularly polarized antennas. The crossed

dipole and crossed slot aircraft antennas were circularly polarized.

9.3.5 Experiments

A multitude of small mobile terminals were available for test operations
and innumerable measurements, demonstrations, and tests of a wide variety were
conducted over the UHF Lincoln Experimental Satellites, Demonstrations even
included support of Apollo 9's splashdown by LES-6. Major categories of significant

experiments were as indicated in Table 9-17 1) (33}_
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Figure 9-7. ECI UHF Terminal Block Diagram
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Table 9-16. Characteristics of Major UHF LES Terminals

Terminal Feature

Lexington C-135 ECI
« | Type Parabolic Reflector Blade( 1)
g | Size 30-ft Diameter 51 in, x 1inx 83 in.
% Receive Gain 23 dB 4 dB
< | Efficiency 429,(2) No data
Rec. Bandwidth 100 @ 3 dB Pts. (2) Approx. 35° width for toroidal pattern
© g | Type Preamplifier | No data No data
9 2| Bandwidth No data (3) 100 KHz
2 &| Noise Temperature| No data 500-800°K
L Type Amplifier No data No data
g » 9 Bandwidth No data® 100 KHz
e E & Amp. Power Out 1 kw 1 kW
"§ oy | TYPE Autotrack None
i & | Accuracy No data None
28 % G/T No data ) -24 dB/(OZI;I (£)
g &;ﬁ EIRP 85 dBm 64 dBm
% }é Transmit Feed Circular Linear
E S | Receive Feed Circular Linear
é 2 | Radome None None
@3 | Type Facility Fixed Aireraft Terminal
o

Notes: (I) Other antennas such as crossed dipoles and crossed slots
were also employed.
(2) Derived value based on data availabie.
(3) Had tobeat least 500 KHz to be compatible with the bandwidth
of LES-6.




Table 9-17. Summary of UHF LES Experiments
Program
Experiment Objectivel Nature of Activity
Satisfied*

1. Aircraft Antennas 2 Evaluate antennas for use on airplane and
helicopter satellite communications terminals.

2. Satellite Multiple Access [1,2&3 Determine system limits and constraining
factors for multiple access using tactical
terminals.

3. Tactical Modems 2 Measure performance of different tactical
terminal modulation/demodulation techniques.

4, Propagation Link Losses 3 Evaluate factors producing variations from
link attenuation determined by conventional
free space spreading and antenna gain consider-
ations

5. System Noise and &4 Measure receive system noise temperatures

Interference and RF interference to tactical satellite
communications systems.

6. Satellite UHF Transponder 1 Determine performance of solid state
satellite repeaters operating at UHF.

7. Solar Cell Degradation 9 Study the effect of the space radiation environ-
ment on various experimental solar cells.

8. Earth Albedo 9 Define the spectrum of electromagnetic energy
at optical frequencies as reflected by the
earth and viewed by a synchronous satellite.

9. Space Radiation 9 Measure temporal and spatial characteristics

Environment of near earth, space radiation.

10. Automatic Stationkeeping 8 Evaluate the feasibility of autonomous onboard
control employing either cold ammonia gas or
pulsed plasma thrusters.

11. Automatic Attitude Control 7 Determine the feasibility of autonomous on
board control employing either magnetic
torquing or cold ammonia gas thrusters.

12, High Efficiency RF Trans- 6 Demonstrate the feasibility of satellite trans-

mitters mitters operating directly from a solar array
primary power system.

13. Despun Antenna 5 Study use of switching in conjunction with

multi-element arrays as a means of realizing
a despun antenna on a spin stabilized satellite.

*Program objectives are numbered and defined in Tahle 9-10,
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The despun antenna, indicated in the table, was flown on LES-6 and consisted
of an array of 8 elements with each element composed of a pair of collinear axial

(21)

extended dipoles in combination with a pair of collinear axial slots Two elements
were excited at a time and all combinations of successive elements were sequentially
activated as the satellite rotated. Each combination was excited in either of two-
phase relationships to produce two beam positions per pair of elements and a total

of 16 switched overlapping beams in the array, Post launch measurements of

antenna gain indicated it was in the region of 8,5 to 9 dB, which agreed with pre-

29
launch measurements, Pattern ripple due to beam switching was + 0.5 dB( ).

Two antenna-switching logic systems were included on LES-6 which could be

operated independently or in a combined mode (21).

As on LES-4, one system
measured the direction to the earth at one point in the orbit and predicted the orbital
position of the satellite as a function of time while the second system determined
earth direction during every revolution of the spinning satellite. In the combined
mode, the earth direction measuring system was employed during the hours of local
daylight at the subsatellite point and the orbit storage system was used during the
hours of local darkness. All modes of operation worked well for the first week in

(29)

orbit Subsequently a relay flip-flop failed in the Earth Position register of the
orbit storage system causing inaccurate pointing in both that mode and the mixed
mode. The earth direction measuring system continued to work as expected. As
on LES-4, however, pointing became inaccurate between local sunset and sunrise

as the satellite's optical sensors lost track of the exact location of the earth,

Proper operation of LES-6's high efficiency RF transmitter from a varying
dc power source was verified immediately after launch when it was discovered that
one solar panel was not delivering the expected power. This failure produced a
spin variation of about 1 volt in the solar bus voltage which resulted in about a 0. 5~

(29)

dB spin variation in transmitted power This variation was superimposed on the
ripple due to beam switching. The transmitier has continued to perform properly

as solar array output has varied with the season of the year and satellite lifetime in

orbit.
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Automatic attitude control systems were included on both LES-5 and LES-6.
Thgir principal of operation was basically the same. They measured latitude, of the
satellite—earth line, relative to the satellite’'s equatorial plane at points 90° apart in
the orbit, providing a good view of both the sunlit earth and the sun(zl)(%). By
positioning the measurements 90° apart, X and Y axes of correction were established,

In making a limited number of measurements it was assumed that the satellite

attitude did not change greatly between measuring points. Proper orbital measurements
points were determined by the coincidence of pulses from specially positioned earth

and sun sensors. Knowledge of the satellite spin rate, as determined from sun sensor

measurements, and X and Y axis errors allowed corrections to be triggered at the

appropriate points during every satellite rotation,

The LES-5 attitude control system employed only magnetic torquing for
corrections and operated correctly in spite of the failure of one of its four sun

sensors. The effect of the failure was to reduce the rate of attitude correction but

(21). The system demonstrated a capability of keeping the

(46)

not its overall accuracy
spin axis within 2, 6° of normal to the orbital plane The LES-6 system provided
either magnetic or cold ammonia gas thruster corrective torquing and was designed
to maintain attitude within 0. 16° when the gas thruster system was employed(zl).
The LES-6 system could not be operated when the satellite spin axis was found

(immediately after launch) to be offset 2. 2° from the axis of symmetry of the cylinder.

The automatic stationkeeping system on LES-6 used an accurate onboard
clock to provide an indication of the time at which the gatellite should arrive at a

(21)(28). The time of actual arrival, as determined by the

given point in its orbit
clock and the coincidence of sun and earth sensor cbservations, was compared with
the desired time to generate longitude position errors to be corrected by firing
thrusters as appropriate, Thrusters firings were activated at satellite orbital
points separated by 180° in order to ensure that orbit eccentricity remained constant,
Either cold ammonia gas thrusters or pulsed plasma eleetric microthrusters, using

solid Teflon as the propellant, could be employed for corrections.
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Both thruster systems displayed proper and reliable operation although some
intermittency of the pulsed plasma thrusters was observed after they had fired for

47)

several thousand hours Further, the system displayed a capability of maintaining

the spacecraft within about 2° of a desired reference longitude,

The earth albedo and space radiation environment experiments were carried on
LES-6 alone. Both experiments have returned considerable data that has been useful
in characterizing the space environment. Inthe case of the radiation experiment,
this was accomplished in spite of interference produced when the communication

)

. 48 .
antennas situated closest to the experiment were energ1zed( . Data taken during
periods of interference were unusable, However, there were times defined by a set

of earth and sun angles during which valid data could be obtained.

Solar cell experiments on LES-5 and LES-6 returned valuable data that has
contributed towards the design of spacecraft solar arrays. LES-5 silicon cells
showed an initial 4 percent degradation and an 8 percent yearly degradation. The
CdS cells displayed a 5 percent initial degradation and a 20 percent yearly degrada-

tion(ls).

LES-6 experiments revealed, among other things, that low energy proton
damage effects at the unshielded edges and contact bars of cells do occur in syn-
chronous orbit and are significant and that lithium doped P-N cells fair quite poorly

(44)

with an initial year's degradation as high as 42 percent .

The UHF transponders carried on LES-5 and LES-6, in general, performed
well. Measurements taken included received communications signal level, local
oscillator frequency stability and transponder frequency translation, bandwidth,
receiver sensitivity, transponder total and differential time delay, transponder
transfer characteristics, and beacon performance, The receiver on LES-5 showed
a 17-dB seasonal decrease in sensitivity which was attributed to an open circuit in
the first RF amplifier that was produced as the average temperature of the satellite
decreased(21). The satellite temperature cycle was such that the sensitivity dropped
in March and recovered in November of each year. In addition, one of the trans-

ponder local oscillators exhibited a sudden 1700-Hz shift in frequency in December
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1968. This produced a comparable change in translation frequency. It was
hypothesized from ground testing on similar hardware that a capacitor in the LO
experienced an abrupt change in value. LES-6 has performed almost exactly as
predicted throughout its lifetime except for the output variations due to the spin
modulation on the dec power supply. None of the difficulties reviewed significantly
handicapped the communications test program,

Results of UHF noise and interference measurements are given in Table

9—18(33)(35)(43),

As indicated by the table, receiver composite noise temperature
measurements were taken on vehicular, shipborne, and airborne terminals while uplink
UHF interference levels at a synchronous satellite were measured on LES-5 and LES-
6, LES-5's RFI receiver experienced a timing problem which was hypothesized to

be due to cross coupling from one of the onboard logic systems that operated on earth-
sun inputs, These inputs disappeared around local midnight at the subsatellite

point as did the RFI receiver timing problem, As a resuli, all of the LES-5 RFI

data was centered about local midnight. LES-6's data gave a 24-hour distribution of
interference but since the satellite was stationary the information obtained was
primarily applicable to the North and South American continents alone. In addition

to the measurements indicated in Table 9-18, tests of interference generated by the
UHF tactical satellite communications terminals were conducted showing that

potential conflicts do exist if adequate distances and frequency separations are not

maintained,

Propagation link losses experienced by a UHF tactical satellite communications
gystem as determined from experiments on LES-3, -5, -6 are summarized in
Table 9-19 (see References 33 through 35 and 49). In addition to the factors indicated
in the table, structural blockage during maneuvers was found to be an occasional
problem in aireraft and shipboard terminals,

Performance of the three major types of modems evaluated in the tactical

(33)(34) In all

satellite communications environment is summarized in Table 9-20
cases, the table indicates performance on a channel perturbed by additive white

Gaussian noise alone.
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Table 9-18. Noise and Interference to UHF Tactical! Satellite Commumications

Test

Nature of Results

1.

Vehicular Terminal Receive System Noise
Temperature

Receiver noise temperatures varied between 360°K and 530°K. Contribu-
tions by environment were as low as 300° K and occasionally an order of
magnitud% higher. Tot(:)al system noise temperatures ranged between
about 700°K and 3,700 K. RFI was an occasional problem. Both
AN/TRC-24 and AN/ARC-27 terminals were sources of interference.

Shipborne Terminal Receive System Noise
Temperature

Total receive system noise temperatures varied between about SDOOK
and 2000°K. RFI was not a serious problem but was occasionally
encountered. Shipboard radars such as the AN/SPQ-5A, AN/SPS-29,
and AN/SPS-43; communications terminals such as the AN/GRC-27,
portable electric generators and arc welders could produce interference.

3.

Airborne Terminal Receive System Noise
Temperature

Total receilve system noise temperature including RFI was about 1000°K
over water and lightly populated areas, about 2000 K over fairly heavily
populated land areas, and about 10,000 K at low altitudes directly over
industrialized towns. Specific high power UHF ground communications
transmitters and the Time Division Data Link (TDDL} transmitters
located around the perimeter of the U.S. caused interference problems.

Uplink Interference to Synchronous Batellites

Measured on LES-5 and LES-6. * Largest signals come from TDDL
sites in the air-defense system, Many other signals also detected.
There was no piling-up of signals from many small eommon-channel
transmitters. Some portions of the bands scanned showed little activity.

*Surface EIRPs as low as 50 to 100 watts detected on LE $-5. LES-6 responded to EIRPs of 10 to 25 watts,




Table 9-19. UHF Propagation Link ILosses

Parameter

Nature of Results

1.

10.

Surface Terminal Antenna
Gain

Power Imbalance

Intermodulation

Atmospheric Absorption

Multipath Fading

Polarization Losses

Tast Fading

Scintillation

Tropical Foliage

Auroral Activity

Aireraft antenna gain may vary from +8 to -15 dB
over a hemisphere with elevatlon angle to satellite a
major factor determining average gain. Surface
vehicular or manpack terminal patterns affected

by any metal object within 10 meters.

Can be significant problem for multiple mobile termi-
nals accessing a hard limiting satellite since individuall
terminal uplink power levels showed about 2 12 d3
variation. Ability of individual terminal to effect
entire syatem decreased dramatically as number of
total accesses became large ({.e., about 10).

In geneval, was not a significant problem, In case
of FM voice signal and frequency hopping signal,
however, intermodulation acdded a noticeable
amount of noise to M signal.

Attenuation due to atmaspheric meisture may
vary between 0.5 to 1.5 dB dependent upon the
atmospheric path traversed by the signal.
Locally heavy precipitation can add several
more dB of loss,

Encountcred by aireraft. Two ray model for

the most part valid in predicting results. Cir-
cularly polarized signals provide degree of
protection since multipath fading on horizontally
and vertically polarized components is rclatively
independent. Fading occurs primarily for eleva-
tion angles between 0 & 20°, CQver water and ice
eyclic fades vary between 1 & 10 B with 5 dB
being most common, {ver land cyclic fades
decrease to 2 to 3 dB with cccansional random
fades of 5 to 10 dB. Flights over mountpins dis-
play no multipath.

Cun be up to 3 dB for operation with circularly
polarized satellite. Circularly polarized aireraft
antennn losses will, in general, vary with clevation
angle to satellite.

Occurred at rate 100 times faster than predictable
by 2-ray multipath mo del.  Both enhancement and
fading occurrcd. Was frequency selective. Ocurred
only over water at look angles greater than 259
when operating within 30° of equator. Did not
appear cyclic.

Limited data indicated Jow probability of occurrence
for operation above 10" clevation angle in Temperate
Zone (1209 to + 65° latitude). Can cause fades up to
20 dB. Polar Zone scintillation also observed.

4 to 6 dB of loss encountered by vehicular and man-
pack terminals. Changing moisture content causes
variations. ‘

Limited data indicated little or no effect,
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Gaussian noise alone, The TATS performance is about 2.5 dB at 2.4 kbps and 4.5
dB at 75 bps above theoretical. This performance was for production model modems
opfimized for the 2. 4-kbps data rate. Lincoln Laboratory prototype TATS modems
achieved much nearer to theoretical performance at both data rates. Production
TATS modems also displayed poor operational reliability. The triple diversity
modem displayed a significant degree of protection against multipath and RFI as did
the TATS modem. The TATS modem also supplied an in-band multiple access

capability.

Multiple access tests were successfully conducted employing narrowband FM
voice, triple diversity teletype, TATS 2400 bps, and TATS teletype separately and

(33)

in mixed modes Up to 17 TATS 2400 bps accesses through LES-6 into a C-135

(50)

aircraft terminal were demonstrated to be feasible However, TATS, as designed
with its short period frequency hopping pattern (i.e., it repeats every 7 symbols)
suffered from considerable interference due to related address codes. With even as
few as two common frequencies between two hopping patterns the eross correlation
was sufficiently high to make false acquisitions so prevalent that acquiring the proper
signal was almost imposaible, Therefore, the hopping patterns present in a multiple
access environment had to be severly constrained. These restrictions, in some
cases, limited the number of premissible users below that theoretically indicated

by consideration of available power and bandwidth alone.

Table $-20. Tactical Modem Performance

Modem Nature of Results

1. TATS E, /N of 11.5 dB and 13. 5 dB required for 1074
proba%ility of error at 2.4 Kbps and 75 bps data
rateg respectively. At these levels of Eb/Né)
acquisition failure rates were less than 107~

2. Triple Diversity | E /N of 12 dB required for probability of error
less than 1072 at 75 bps data rate. No acquisition
problem existed.

3. FM Voice Narrowband FM gave acceptable quality at
Py/Ng=50 dB which corresponded to Eb/No of
about 15 dB for data transmissions over this
channel. No acquisition problem existed.
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Numerous tests were conducted in attempts to develop aircraft antenna systems
providing constant gain and polarization losses over an entire hemisphere, Tixed
wing aircraft experiments included evaluations of crossed slot, crossed dipole, and

(33)

blade antennas The crossed slot antenna supplied relatively good hemispherical
coverage with antenna gain for the circularly polarized antenna varying between -1
dB and +5 dB. The crossed dipole and blade antennas provided complementary
patterns with the former displaying good gain at elevation angles above 30° to 40°
while the latter supplied its peak gain at elevation angles below 30° to 407, The
crossed dipole supplied circularly polarized signals and the blade linearly polarized
signals. The complementary patterns indicated that these two antennas should be
employed in a combined system having a switching capability for selecting the

appropriate antenna,

Helicopter antenna tests included evaluations of crossed dipole and blade
antennas individually and in various combinations mounted above and below the

(36)

rotor As in the case of the fixed wing aireraft tests, results indicated that a
crossed dipole and blade antenna should be employed in combination, Locating it
above the rotor avoided rotor blade modulation caused primarily by blockage of the

antenna aperature.

9.3.6 Operational Results

These were operational spacecraft; therefore, no operational traffic was
carried. The experimental tactical ground terminals operated essentially as
expected. One difficulty was that production models of the TATS modem displayed
poor reliability. The satellites also operated, generally, as expected in spite of a
number of minor difficulties, most of which were described in the discussion of

"Experiments' in Section 9, 3. 5.

Problems previously discussed on LES-5 included the sun sensor failure
affecting the automatic attitude control system, the high rate timing signal to the RFI
and command receiver, the 17~dB degradation in communications receiver sensitivity,

and the sudden shift in transponder frequency translation. Additional LES-5
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difficulties included intermodulation between the telemetry and commuincations
transmitters, an open circuit in one series-connected string on a solar panel,

and higher than expected first year degradation of the solar array (i.e., about 22%).
The intermodulation was 2 result of the two signals using the same antenna and was
generated in spring finger contacts used at the edges of the slot antenna cavities
behind the solar panels. This problem disappeared after the satellite had been in
orbit a few months. The solar array power difficulties did not interfere with LES-5

testing.

Problems previously discussed on LES-6 included spinning about an axis 2. 2°
offgset from the axis of symmetry of the cylinder, one solar panel delivering a low
power output, a flip flop failure in an Earth Position register of the antenna switching
logic, and interference to the radiation environment experiment by radiating
communications antemna elements, Additional LES-6 difficulties included intermodu-
lation between the beacon and communications transmitters and the shutter, covering
the radiation experiment, operating intermittently, The former was the same problem
as experienced on LES-5 and it too disappeared after a brief time of in~orbit opera-
tion. The latter was caused by variations in the dc power level and the lack of a

power regulator on this spacecraft,
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SECTION 10 - INTELSAT

10.1 PROGRAM DESCRIPTION

The International Telecommunications Satellite Consortium (Intelsat) is a
partnership initially established between 14 member nations in 1964 for the purpose
of providing global commercial telecommunications via satellite, Since that time,
the organization has expanded to include 79 member nations (as of May 1971), and new
applications for membership continue to be received. The interim agreements estab-
lishing the organization in 1964 provided for two management organs. An Interim
Committee on Satellite Communications (ICSC), made up of member nations, served
as a policy board, and the U, S, Communications Satellite Corporation (Comsat) was
responsible for system operation and technical management. In this arréngement,
Comsat was also the U.S. representative on the ICSC and under voting weighted ,
according to system ownership was the predominant voice in establishing initial Intelsat

policies,

During negotiations initiated in 1969 and concluded on May 20, 1970, the interim
agreements were superseded by permanent definitive international arrangements that
will become effective in about 1978. The reorganization required by the new agreements
will be phased over a 6-year period. This period will begin when all member nations
have ratified the new agreements. The earliest possible date for total ratification is

April 20, 1972.

During the 6-year phase-over period, a Board of Governors, composed of 20 to
25 members voting according to ownership percentage, will replace the ICSC. No single
member will control more than one-half the votes on this board. The Board of Governors
will receive top level political guidance from an Assembly of Parties, consisting of
representatives of all member states, which meets at least once every 2 years. The
Board will be guided on system operational matters by a Meeting of Signatories, consisting
of the telecommunications representatives of all member states. At the start of the
6-year phase-over period, the Board will appoint a Secretary General to handle adminis-

trative and financial management of the system. Additionally, the Board will negotiate
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a G-year contract with Comsat to provide system operational and technical management.
At the end of the 6-year period, a Director General will be appointed to assume the
executive responsibilities of Intelsat. He will take over administrative, financial,
operational, and technical management of the system., The Director General will be
responsible to the Board of Governors, but the exact makeup of the Director's office

has yet to be determined,

From the time it was established in 1964 to the present, Intelsat has produced
four generations of satellite and ground systems. Development of the initial satellite,
nicknamed Early Bird and later designated Intelsat I, was initiated by Comsat in
November 1963, Just a year earlier, in August 1962, the U.S. Congress had passed
the Communications Satellite Act, which authorized the creation of a private corporation
(Comsat) to instigate the development of a global commercial communications satellite
system. At the time when Early Bird's development began, the Syncom II satellite
had just completed demonstrating that reliable communications could be provided
through lightweight synchronous satellites. As a result, the Syncom satellite design
formed the basis for the Early Bird spacecraft. Early Bird was launched in early 1965,
as indicated in Table 10-1, and by April 22, 1965, had successfully achieved synchroni-
zation into the desired geostationary orbit with the satellite located over the Atlantic
Ocean. After a period of satellite performance testing, system parameter evaluation
using the operating ground stations, terrestrial and satellite circuit lineup, and public
demonstrations, commercial operation was initiated on June 28, 1965, The satellite
successfully provided commercial communications service between the United States
and Europe until it was retired in early 1969, It was reactivated for a brief period later
in 1969 when temporary difficulties were encountered with the antenna system of a third

generation Intelsat satellite.

The second generation of Intelsat spacecraft was designated Intelsat II. Even when
the Intelsat I system was under development, it was realized that many of the inherent
advantages of space communications could not be exploited. Specifically, its antenna

characteristics were such as to embrace only the northeastern part of North America
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Table 10-1, Intelsat I (Early Bird) Spacecraft

Launch Date April 6, 1965
Manufacturer/Sponsor Hughes /Comsat
Launch Vehicle Thrust Augmented Delta
g N Apogee (Mi) 22,733
®
g % Perigee (Mi) 21,748
E E Period (Min. ) 1436, 4
E, Inclination 0. 10
Status; June 28, 1965 - Operational

Jan. 20, 1969 - Retired Reserve
June 29, 1969 - Reactivated
Aug. 21, 1969 - Retired (Pre-

sently located at 121°W
longitude)

*Parameters at initial orbit injection. Attitude control and stationkeeping
maneuvers produced changes.
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and the western part of Europe, and it did not allow for simultaneous intercommunication
among numerous earth stations. By late 1965, it was recognized that the constraints
imposed by these deficiencies would be incompatible with a NASA requirement for
multichannel communications in late 1966 among its tracking stations at Carnarvon,
Australia, Ascension Island, Canary Island, tracking ships in the Atlantic, Pacific,

and Indian Oceans, and the Manned Space Flight Center in Houston, Texas. In the past,
these circuits had been carried by HF radio, but for manned space flights, improved
communications were desired. Consequently, in the fall of 1965 the development for
Intelsat II had begun with the primary goal of satisfying the NASA requirements; excess
capacity was to be used for other commercial traffic. Because of the urgency to satisfy

the NASA requirement, the Intelsat II design evolved directly from that of Intelsat I.

Four Intelsat II satellites were produced and Iaunched as indicated in Table 10-2.
The first launch occurred in QOctober 1966; but when the satellite's apogee motor mal-
functioned, the spacecraft was left in a highly elliptical inclined orbit, making it unusable
for full-time commerical operations, Subsequent launches in January and September
1967 successfully placed two satellites into operational service over the Pacific Ocean,
A March 1967 launch successfully supplemented the Intelsat I satellite in operation over
the Atlantic Ocean. With these three satellites in place, commercial service was
available over both the Atlantic and Pacific Oceans, The Intelsat II satellites continued
to meet international commercial communications requirements successfully until third

generation replacement satellites allowed them to be retired to the active reserve.

The development of Intelsat III was initiated in 1964 with a design study and
followed 2 years later with the award of a contract for the design, development,
and fabrication of the necessary spacecraft, Eight Intelsat IT satellites were launched
between September 1968 and July 1970 as indicated in Table 10-3. Launch failures in
September 1968, July 1969, and July 1970 made three of these satellites unusable.
A successful launch in December 1968 placed a spacecraft in service over the Atlantic.
Some difficulties were encountered when this satellite's mechanically despun antenna

started sticking in mid-1969. This occurrence made necessary the aforementioned
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Table 10-2. Intelsat I Spacecraft

Satellite F-1 F-2 F-3 ¥-4
Manufac/Sponsor - Hughes /Intelsat —_—
Launch Date 26 October 1966 11 January 1967 22 March 1967 |22 Septamber 1967
Launch Vehicle < Thrust
Improved Delta
Apogee (Mi) 23,014 22,257 22,254 22,245
* -
2| Perigee (Mi) 2,088 22, 244 22,246 - 22, 220
a]
%’ Inclination 17.2° 1.3° 2° 0.9°
o
© 1| Period (Min) 730.1 1436. 1 1436. 1 1429.5
Status: Failed to achieve Placed in Placed in Placed in service
synchronous orbit service over service over over Pacific at
due to malfunction Pacific at 172° Aotlantic at 176° East. Now
of apogee motor. East. Now in 6- West. Now at 171° West.
Employed commer- reserve at 1259 in Teserve at
cially in December West. 13~ West.
1966 and January
1967.

*Parameters at initial orbit injection, Attitude control and stationkeeping maneuvers produced changes.



9-01

Table 10-3. Intelsat Il Spacecraft
Satellite: INTELSAT J1I {F-1) {F-2) (F=3) (F=4) (F-35) (F-6) (F-7) (F-8)
Manufacturer/Sponsor TRW/COMSAT TRW/COMSAT TRW/COMSAT TRWAOMSAT TRW/COMSAT TRW/COMSEAT TRW/COMSAT TRW/COMSAT
Launch Date Sept. 18, 1968 Dec. 18, 1968 Feb, 5, 196% May 21, 1969 Jaly 25, 1969 January 14, 1974 April 22, 1970 July 3, 1970
Long-Tank Delta Lang Tank Delta Long Tanok Delta

Launch Vehicle

Long-Tank Delta

Long-Tank Delta

Long-Tank Thrust
Augmented Delta

Long-Tank Thrust
Augmented Delta

Long-Tank Thrust
Aungmented Delta

. [ Apogee (i) 22,257 22,235 22,166 3355
g Perigee {mi) ~o Orbit 22, 244 22,215 71,889 167
F [Mclinstion ideg. ) Achieved 0.71 1.29 0.50 36,3 No bata o Data Xo Data
E | Peried {min.) 1436 14326 1436 146. 7
Siatrs 2 Failed to Orhit; Placed over the Ptaced over the Placed in service {ousable because Placed over the Placed over the Failed to achieve
iteh rate svstem Atlantic at 30 W | Pacific at 174°E and over the Pacific at 3rd Stage mal- Atlantic at 24° W, Atlantie at 19° W, synchronous orbit
Pa ¥ and began service on 174°% as areplace- | function placed and began service and began service due to a malfunction

malfunction foreed
payload destruct

December 24, 1968,
Ceased operation
June 29, 1969.
Resumed operaton
Aug. 1, 1968, Now
at 46°W. Placed in
retired resemve
Feb, 1, 1970,

hegan service on
February 18, 1969,
Repositioned aver
Indian Ocean at 62,5
after losing G dB of
transponder gaib due
to 2 malfunction in one
stage of the tunpel
diode amplifier, and
began service there
July 1, 1969,

ment for (F-3) and
began service on
May 31, 1969,

into incorrect
Orbit. Subsequently
decayed.

on Feb, 1, 1570,

on May 8, 1870,

during apogee
motor firing,




reactivation of Early Bird. The antenna problem was resolved by August 1, 1969,
and commercial operations were resumed until a subsequent January 1970 Intelsat II
launch allowed the satellite to be placed in the retired reserve. In April 1970 another
successful Intelsat III launch supplemented the operational capability available over

ithe Atlantic.

An Intelsat TII satellite was first placed into operation over the Pacific in February
1969. This satellite was supplemented by a second spacecraft in May 1969. When the
first Pacific Intelsat I lost 6 dB of transponder gain due to an RF receive amplifier
malfunction, it was relocated over the Indian Ocean where the traffic requirements were
lighter. As a result, four Intelsat Il satellites were, as of May 1971, providing global

commercial service over the Atlantic, Pacific, and Indian QOceans,

Development of the fourth generation of Intelsat spacecraft, Intelsat IV, began in
the latter portion of the 1960s. These satellites, manufactured by Hughes Aircraft
Corporation, have been designed to provide a substantially greater capability to meet the
increased global communication needs of the 1970s. The first, in an expected series of
eight satellites, was successfully launched by an Atlas Centaur rocket into a geostationary
orbit on January 25, 1971. It was positioned over the Atlantic at 24. 5°W longitude.
Subsequent Intelsat IVs will be launched for service over the Atlantic, Pacific, and
Indian Oceans with an additional two satellites as spares in orbit. Each satellite will

have a life expectancy of about 7 years,

As of Mid-1971, Intelsat had already commenced planning for an Intelsat V series
of spacecraft. The first launch of an operational satellite is being projected for the
1977-78 period. It may be preceded by an experimental or prototype model. The

precise approach to satellite development has yet to be formulated.

Because the Intelsat program has been a commercial venture, the number of
major innovations in equipment and techniques employed has been limited, The intent
has been to minimize the risk of spacecraft failure and the exceptional reliability record
amassed by the system testifies to the success of this policy. Nevertheless, the

Intelsat program has made significant contributions to satellite communications.
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Numerous subjective tests with Intelsat I demonstrated conclusively that the
round trip time delay and echo due to two-wire user terminations were not insurmountable
obstacles to the utilization of synchroncus satellites for commereial communications.

This was in confirmation of preliminary indications obtained on Project SYNCOM.

The Intelsat II spacecraft demonstrated that tunnel diode amplifiers of 6perationa1
reliability were available for use as RF receive preamplifiers. Utilizing these relatively
low-noise, high-gain preamplifiers allowed direct RF to RF conversion in a single stage
to be employed, Sufficient spacecraft power and high performance earth terminals
allowed these transponders to be designed for linear input/output power transfer
characteristics. Additionally, Intelsat II and an expanded ground complex demonstrated
the feasibility of extensive multiple accessing of a single satellite transponder by a group

of operational ground terminals,

When the wideband Intelsat Il satellites were placed into operation, it was necessary
to introduce a third generation of earth stations to the system in order to take full advan-
tage of the expanded capabilities of the space subsystem. These terminals employed
newly developed 500-MHz bandwidth cooled parametric amplifiers, as well as 500~-MHz
bandwidth high power traveling-wave tube transmitters, capable of over 6 kW of multi-

carrier power.

The more recent Intelsat IV spacecraft have contributed to satellite co mmunications
technology by demonstrating fixed narrow beamwidth (i. e., 4. 5°) antennas mounted on a
mechanically despun platform and a highly channelized satellite repeater (i.e., 12 inde-
pendent transponders). The narrow-beam antennas provide coverage to a fixed, relatively
restricted area of the earth but the high antenna gain available significantly increases
satellite EIRP. The large number of transponders, each having a 36-MHz bandwidth,
allows users with substantially different communication requirements to operate
independently of each other in separate satellite channels (e.g., television distribution in
one channel, high-capacity telephone trunks in another, and low-duty cycle individual
voicelinks in still another). Additionally, a fully variable, demand -access, satellite
system will be demonstrated for the first time during the period when the Intelsat IV

satellites are being placed into operational service. Comsat has developed a
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single-carrier-per-voice channel PCM-PSK-FDMA demand-access system nicknamed

SPADE that will be employed.
10.2 SYSTEM DESCRIPTION

Transatlantic communications via Early Bird were nominally effected through
the Andover, Maine, earth station and one of four European earth stations. A Canadian
station at Mill Village, Nova Scotia, also served as the North American terminal
about 1 day per week after late 1966. In addition, it carried Early Bird traffic during
the Intelsat II launches to release the Andover station for launch support operations.
Three of the European stations, located at Goonhilly Downs (England), Pleumeur
Bodou (France), and Raisting (Germany), served alternately in the roles of operating
station and standby. They were interconnected by microwave links and submarine
cables that permitted all European traffic to be carried by any one of the stations,
The fourth smaller participating European terminal, located at Fucino (Italy), acted
as a terminal for weekend traffic, It was linked to the other three terminals via
Frankfurt, Germany, The terminals participating in Early Bird operations are

summarized in Table 10-4.

10-4. Intelsat I Participating Earth Terminals

Ant, Date of

Location Owner Dia. | Install-

(ft.) | ation
Andover (Maine) Comsat 67.7 1965
Mill Village (Nova Scotia) Canadian Overseas Telecom 8.5 1966
Corp (COTC)
Goonhilly Downs (England) | General Post Office 85.0 1965

Pleumeur Bodou (France) Centre National d'Etudes des 67.7 1965
Telecommunications (CNET)
Raisting (Germany) Deutsche Bundespost 82 1964

Fucine (Italy) Telespazio 44 1965
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The development of Intelsat II with a bandwidth several times that of Early
Bird was accompanied by second generation earth station designs such as those for
the Brewster Flats, Washington, and Paumalu, Hawaii, installations, A listing of
terminals, in addition to those indicated in Table 10-4, participating in operations
with Intelsat II satellites, as of April 1968, are listed in Table 10-5, Intelsat II
satellites located over both the Atlantic and Pacific Oceans provided multiple-access
communications among appropriate groups of these terminals. The wide variety of
station.antenna sizes stems largely from the fact that many of the smaller ones were
required on very short notice to provide communications support for NASA's Apollo
program. Many of the smaller aperture stations have now been replaced by ones of
higher sensitivity. Their existence did, however, provide experience in working

with a variety of stations with a wide range of sensttivities,

Table 10-5. Intelsat II Participating Earth Terminals

ANTENNA DATE
LOCATION DIAMETER {FT.) INSTALLED

FUCINO {ITALY} 20 1967
BUITRAGO (SPAIN) 85 1968
ORAND CANARY ISLAND (SPAIN) 42 1967
ASCENSION ISLAND 42 1867
BREWSTER FLATS {WASHINGTON) 85 1966
PAUMALU (HAWAID (NO. 1) 85 1966
PAUMALU {HAWAIIL (NO. 2) 42 1968
CARNAROON (AUSTRALIA) 42 1967
TAMAY (PHILIPPINES) 42 1968
S| RACHA (THAILAND) 42 1968
MOREE (AUSTRALIA) 92 1968
IBARAKI {JAPAN) 72 1968
NASA TRACKING SHIPS {3} 30 1967
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System planning for the Intelsat III satellite was completed in 1967, and a
third generation of earth stations was designed to provide full operating capability
with these spacecraft, Of paramount importance to the Intelsat III satellite design
was the use of two transponders covering nearly the entire 500-MHz band assigned
to communications satellite service. The new earth station designs made this
entire band available for use so that carrier frequencies could be assigned without
regard for narrow~band equipment. This flexibility guaranteed the success of multi-
destination FM-FDM to provide complete satellite multiple access to all earth
stations in the network. A complete list of terminals participating in operations with
Intelsat III satellites, as of January 1971, is provided in Table 10-6. Multiple access
communications nets have been formed among appropriate groups of these terminals

to operate with Intelsat satellites located over the Atlantic, Pacific, and Indian Oceans.

Fourth generation earth terminals are presently being constructed to operate
with the new Intelsat IV satellites, These terminals provide a large number of
carriers to take advantage of the multiplicity of satellite transponders that have
become available. As a result, the requirements for linearity in common RF trans-
mitting and receiving elements within these ground terminals have been substan-
tially increased. Additions to the ground complex defined in Table 10-6 that should
be operational by the end of 1972 are listed in Table 10-7. Intelsat IV satellites will
in the near future assume responsibility for space segment operations over the
Atlantic, Pacifie, and Indian Oceans. These satellites and new signal processing
techniques will allow both fixed assignment and fully variable demand assignment
approaches to multiple access to be implemented among appropriate groups of user

terminals,

Operating frequencies for the four types of Intelsat spacecraft are defined
in Table 10-8, The bands of utilization indicated depict the fact that the Intelsat I,
II, and III spacecraft contained two, one and two independent repeaters, respectively.

In the case of Intelsat IV, the bandwidth shown spans the total operating frequency
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Table 10-6. Intelsat I Participating Earth Terminals
ANTENNA DIAMETER
LOCATION {FT.} DATE INSTALLED

1)  Balcarce, Argentina No. 1 No Data September, 1969
2]  Ascension isiand, United Kingdom 42 April, 1967
3) Moree, Australia a0 May, 1968
4) " Carnarvon, Australia 97 October, 1969
5) Ceduna, Australia Mo Data December, 1969
6} Ras Abu-—Jariur, Bahrain a0 July, 1969
7} Tangua, Brazil 08 February, 1969
g] Mill Village, Canada No. 1 85 Octaber, 1969 (Last Mod}
9 Mill Village, Canada No. 2 90 January, 1969
10) Longavilo, Chite 97 July, 1968
11) Taipei, Repubtic of China 100 December, 19869
12} Choeaonta, Colombia a7 March, 1970
13) Pleumeur—Bodou, France No. 1 67.7 June, 1965 (Last Mod)
14) Pleumeur—Bodou, France No. 2 a7 November, 1969
16} Raisting, Germany No. 1 82 June, 1985
16) Raisting, Germany No. 2 No Data QOctober, 1969
17} Thermopylse, Greece 100 Aprit, 1970
18} Hong Kong, United Kingdom No. 1 90 September, 1969
19}  Djatiluhur, Indonesia 97 September, 1969
20} Asadabad, Iran 97 October, 1969
21} Fucino, Italy No. 1 90 August, 1967 (Last Mod}
22) Fucing, Italy No. 2 97 July, 1970
23) |baraki, Japan No. 2 90 March, 1968 (Replaced Ibaraki 1)
24) Yamaguchi, Japan 80 July, 1969 (Last Mod)
25) Mt. Margaret, Kenya No Data August, 1970
26) Kum San, Republic of Korea a7 April, 1970
27)  Umm Al-Aish, Kuwait No. 1 97 October, 1969
28} Arbaniyeh, Lebanon 97 September, 1969
29} Kuantan, Malaysia No Data March, 1970
30} Tulancingo, Mexico 105 January, 1969
31} Sehou!s, Morocco No Data December, 1969
32) Utive, Panama aa September, 1968
33} Lurin, Paeru 160 July, 1968
34) Tanay, Philippines No. 1 97 April, 1968
35) Buitragoe, Spain Na. 1 85 January, 1968
36} Buitrago, Spain No. 2 98 April, 1870
37) Grand Canary Island, Spain Twin 42 ft. April, 1967
38) Sri Racha, Thailand No. 1 97 April, 1968
39) Svi Racha, Thailand No. 2 97 April, 1970
40) Goanhilly Downs, United Kingdom Na. 1 85 July, 1969 {Last Mod}
41} Goonhilly Downs, United Kingdam MNo. 2 Mo Data November, 1968
42) Andover, Maine 67.7 June, 1965
43} Brewster, Washington a7 December, 1966
44}  Paumalu, Hawaii No. 1 97 December, 1966
45) Paumalu, Hawaii No. 2 97 December, 1968
46} Etam, West Virginia 97 Qctober, 1968
47) Cayey, Puerto Rico 97 January, 1969
48) Jamesburg, California 97 December, 1968
49)  Pulantant, Guam a8 November, 1969
60) Bartlett, Alaska 13 July, 1970
51} Camatagua, Venezuela 98 MNovember, 1970
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Table 10-7. Ground Complex Additions by End 1972
Location Ante(r;il)a Dia. Date Installed
1) Barbados, United Kingdom No Data 1972
1) Yaounde, Cameroon No Data October, 1971
3) Vancouver Island, Lake Cowichan, Canada No Data 1972
4) Kinshasa, Democratic Republic of Congo No Data June, 1971
5) Sululta, Ethiopia No Data 1972
6) Martinique, France No Data 1971
7) Libreville, Republic Gabon No Data 1972
8) Raisting, Germany No, 3 No Data 1972
9) Hong Kong, United Kingdom No. 2 No Data 1971
10) Arvi, India No Data 1971
11) Emek Haela, Israel No Data May, 1972
12) Fucino, Italy No., 3 No Data 1972
13) Abidjan, Ivory Coast No Data August, 1971
14) Prospect Pen, Jamaica No Data 1971
15) Ibaraki, Japan No. 3 No Data - 1971
16) Baga, Jordan No Data 1971
17) Umm Al-Aish, Kuwait No. 2 No Data 1972
18) Warkworth, New Zealand 97 May, 1971
19) Lanlate, Nigeria No. 1 No Data 1971
20) Lanlate, Nigeria No. 2 No Data 1972
21) Chittagong Hill Tracts, East Pakistan No Data 1971
22) Karachi, West Pakistan No Data 1971
23) Tanay, Philippines No. 2 No Data 1871
24) Dahban-Jeddah, Saudi Arabia No Data 1972
25) Riyadh, Saudi Arabia No Data 1872
26) Dakar, Senegal No Data 1971
27) Sentosa, Singapore No Data August, 1971
28) Aguimes, Spain 97 April, 1971
29) Tanum, Sweden No Data October, 1971
30) Matura Point, Trinidad No Data May, 1971
31) Apkara, Turkey No Data 1972
32) Goonhilly, United Kingdom No Data 1972
33) Vung Tan, Republic of Viet Nam No Data 1972
34) Iasaka, Zambia No Data 1972
35) Tegucigalpa, Honduras No Data April, 1971
36) PBalcarce, Argentina No, 2 No Data August, 1971
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Table 10-8, Intelsat Frequency Assignments

COMMUNICATIONS TT&C
SPACECRAFT Uplink Downlink Command Telemetry Beacon
Intelsat I (Early Bird) 6288-6314 MHz 4068-4094 MHz 6289 MHz | 4104 MHz 136,4104 MHz
6377-6403 MHz 4148-4174 MHz 6402 MHz 4138 MH=z 137,4138 M Hz
Intelsat 11 6282-6408 MHz 4057-4183 MHz No Data 136 MHz 136 MHz
("
Intelsat III 5930-6155 MHz 3705-3%30 MHz 6175 MHz 3933-3967 3933-3967
6195-6420 MHz 3970-4195 MHz
Intelsat TV 5930-6420 MHz 3705-4195 MHz 6175 MHz 3950 MHz 3950 MHz

(*) Telemetry used to phase modulate beacon
(**) Divided into 12 channels each 36 MHz wide.




range of 12 independent repeaters. Downlink center frequencies for each of the 12
repeaters are: 3725, 3765, 3805, 3845, 3885, 3925, 3975, 4015, 4055, 4095, 4135,
and 4175 MHz, respectively. Uplink frequencies for each repeater are 2225 MHz
above the indicated downlink frequency. The frequencies employed were selected

to be compatible with the frequency bands reserved for commercial satellite commu-
nications use on a shared basis in 1963, These frequencies were set aside in

response to recommendations originated by AT&T during the Telestar program.

With the extensive ground complex and comparatively limited number of
spacecraft involved in the Intelsat program, satellite multiple-access techniques
and RF modulation employed have been of vital importance to the system. IntelsatI
incorporated a multiple-access capability, in a sense, by virtue of its sharing a
single TWT between two independent frequency-translating transponders. Since each
of these transponders was hardlimiting in nature, the number of carriers accessing
each was limited to one. For this reason, the mode of communication was point~to-
point, and only one duplex link between the United States and Europe was provided,
Conventional voice-channel multiplex equipment similar to that employed in the Bell
System and frequency modulation of the radiated carriers were employed. This
system configuration, in conjunction with the ground terminals available, provided

Intelsat I with a 240-duplex voice—qhannel capacity.

The Intelsat II system was designed to provide for frequency-division multiple-
access (FDMA) of the satellite by 2 number of earth terminals, Theoretical studies
had shown that for multiple large index FM carriers accessing the transponder:

(1) the satellite should be designed for a quasi-linear operation, (2) the maximum
power input should be limited to 1.5 to 2. 0 dB less than the producing transponder
saturation, and {8) the level and distribution of the carriers should be such that the
intermodulation products are approximately of constant level over the entire trans-
mission band. To ensure compliance with these criteria, carrier controel stations
were established at Paumalu, Hawaii, and Andover, Maine, whereby the Atlantic

and Pacific Intelsat II systems could be monitored, each from a single point. In
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early operations with Intelsat II satellites, FM carriers centered at specified fre-
quencies were preassigned to individual links between two points, thereby retaining
the point-to-point mode of operation employed on Intelsat I, However, multiple
point-to-point links were established through the Intelsat II transponders. The
system configuration described, together with the second generation ground complex,

produced a 240-duplex voice-channel capacity for each Intelsat I satellite,

It was recognized, by the time the Intelsat III satellites started to be put into
service, that the satellite eapacity could be increased and the system complexity
reduced by switching to a point-to-multipoint mode of multiple-access operation.
This was implemented by designing each terminal to transmit one preassigned
multidestination FM carrier containing channels intended for all users to which it
was linked. Baseband channels were preallocated to a particular user as part of a
given network plan and were stripped off at each respective receiving site, The
Intelsat III satellite transponders were again designed for quasi-linear operation,
and the same type of carrier control concept as utilized for the Intelsat II system
was employed. The described mocie of system operation has allowed the third
generation earth terminals to realize a 1200-duplex voice-channel system capacity
when operating through an Intelsat III satellite. Alternately, the satellite can provide

four television channels.

The Intelsat III approach to modulation, multiple access, and system control
will continue to be employed as the new Intelsat IV satellites are introduced to the
system, However, it will be supplemented, at an early date, by a fully variable
demand-access system called SPADE, which will operate in a separate transponder
of the Intelsat IV satellite, The term SPADE is derived from Single-channel-per-
carrier, Pulse-code-modulation, multiple-Access Demand-assignment Equipment.
The SPADE system will feature PCM encoding of individual voice channels for
quadriphase PSK modulation of a carrier. It includes the ability to deactivate carrier
transmission to the satellite during periods of talker inactivity and a decentralized

control concept allowing self-assignment of available satellite channels. The SPADE
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system has been assigned to transponder 10 of Intelsat IV satellites. This particu-
lar transponder does not have access to the spot beam antennas, SPADE will be
compatible with standard manual or automatic international signaling and switching
systems, User applications, where the satellite channel requirements vary widely
over the period of a day, will find SPADE quite attractive. Each of the Intelsat IV
transponders will, in conjunction with the earth coverage satellite antennas and the
fourth generation ground complex, provide about 500 full duplex voice channels when
FDMA-.FM ig employed, 800 full duplex voice channels when SPADE is used, or1l

FM color television channel, including the TV audio,
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10.3 SPACECRAFT

The Early Bird satellite was very similar to the Syncom III spacecraft, Early
Bird's microwave repeater consisted of two independent nonlinear, hard-limiting,
frequency translating transponders. Both transponders shared a single TWT output
power amplifier, A second TWT was carried on-board the spacecraft for redundancy;
however, only one of the tubes was on at a time. A block diagram of the Early Bird
repeater is provided in Figure 10-1, The satellite was spin-stabilized for attitude
control and the elimination of temperature extremes, The pancake-shaped antenna
pattern was squinted to provide high gain coverage of the northern hemisphere alone,
Spacecraft design lifetime was only 18 months, However, Early Bird operated
successfully for more than 3 years until it was retired from service. Communi-

cations characteristics of this satellite are provided in Table 10-9,

The Intelsat II satellite design evolved directly from that of Early Bird. Among
the most significant changes were the adoption of a single redundant wideband linear
amplifier and an antenna beam that covered hoth the northern and southern hemis-
pheres. The transponder bandwidth was 125 MHz compared with the two repeaters of
25-MHz bandwidth, each used in Early Bird, A block diagram of the Intelsat II
satellite's communications system is shown in Figure 10-2, To maintain the 240-
circuit capacity of Early Bird, in spite of the wider antenna beamwidth, Intelsat II
employed multiple traveling-wave tubes operating in parallel. Four tubes were
included in anticipation that three would be required to meet the EIRP requirements,
leaving one tube as a spare, However, the antenna and power efficiencies achieved
were such that a 2-tube configuration was adequate. The additional power required
by Intelsat IT was provided by using a larger solar cell array. In contrast to
Early Bird, Intelsat II was designed to support communication through the eclipse
periods occasionally experienced in the synchronous orbit, The communication

characteristics of Intelsat II are shown in Table 10-10.
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Table 10-9. Early Bird Communication Characteristics

Type XMTR-Skirted 6-element Collinear Slot Dipoles
RCVA - Collinear 3-element Cloverleaf Array
2| Number 1 - XMTR
= 1 - RCVR
=,
= : o
7, | Beamwidth XMTH - 11 with beam center squinted 7 into
< northern hcmiSphere
RCVR - 40
Gain XMTR - 9 dB; RCVR - 41 dB
Polarization Linear in plane perpendicular to spin axis
Frequency Band C-Band
Type Hard-limiting, double conversion repeater
Bandwidth 25 MHz - each repeater @ 0,5-dB points
Number Two repeaters sharing a common TWT XMTR
g o Type Front End Down Conversion Mixer
ﬁ B Front End Gain No Data
2y
! a Sys. Noise Figure Overall - 10 dB
» Type 6-watt TWT and identical spare
£ | Gain No Data
" Power Out 4, 3 watts as operated
EIRP 10.2 dBW @ beam edge/14 dBW maximum
;_Il_i a| Type Spin (152 rpm) with HZOZ jet attitude & spin rate control
g .
Ed
@ | 8 8|Capability No Data
(=]
E 53 Primary 46. 5 watts from 6000 n-on-p solar cells *
4 |25
= | & 5} Supplement 1.5 amp-hr. from two 21-cell nickel-cadmium batteries**
—
é Comm, Power Needs 26. 8 watts
=
E'; Size Cylindrical: diameter = 28, 4'; height = 23, 2"
Weight 149 1bs at injection, 89-T9 lbs after apogee fire

* (Capability at launch
Furnishes power during launch., Eclipse operation not possible.

*%k
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Table 10-10, INTELSAT II Characteristics

Antenna

Type
Mumber

Beamwidth

Gain (4 GHz)

Transmit: Multiple Element Biconical Horn
One Transmit and 2 Receive
Transmit: iﬁo {centered at equator)

Receive: Essentially omnidirectional
8 dB

Frequency Band
Type
B.W. ( dB)

Number

C-Band
Linear Singlc RT translation
126 MH=z

2 (1 redundant sparc)

Type Front End

Tunnel Diode Amplifier

g Front End Gain No Data
2]
% % Sys. Noise Figure 6 dB
:7]
g
Type 4 TWT's
E Gain No Data
E Power Out Nominal 10.8 dBW (7.8 dBW/TWT)
EIRP (at beam edge) 15 dBW (after back-off for multicarrier
operation)
& g Type Spin with H,0, jet attitude control
§ b Capability No Data
3 ]
E " ® Primary 85 watts from 12,756 n-on-p solar cells *
o g &
2 Z g Supplement 9.0 amp/hour from two nickel cadmium
-E & & batteries **
@
g Comm. Power Needs No Data
Size Cylindrical: Height = 26, 5", Diameter = G6"
Weight 190 1bs after apogee fire

* (Capability at launch

** JInitial capability available for eclipse operation
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Because the communications subsystem of the Intelsat III satellites provided
for two independent transponders, these spacecraft more closely resemble Intelsat I
than Intelsat II. The most significant difference between the Intelsat I and Intelsat III
transponders is that whereas the former was a hard-limiting, nonlinear, double-
conversion repeater, the latter is a linear single-conversion repeater. This is in
agreement with the Intelsat IT design. Each Intelsat III transponder has a bandwidth
of 225 MHz, Together the two transponders cover most of the 500-MHz bandwidth
allocated to the communication satellite service in the 4-GHz and 6-GHz bands,
The initial satellites in the Intelsat III series employed single tunnel-diode amplifiers
in the receiver. However, after satellite F-3 lost 6 dB of transponder gain due to a
malfunction in one stage of the tunnel-diode amplifier, all subsequent spacecraft
were provided with redundant receive amplifiers to enhance the overall subsystem
reliability. A block diagram of the satellite communications subsystem is provided
in Figure 10-3. Communications characteristics of the satellite are summarized

in Table 10-11.

A further important distinction between Intelsat I and Intelsat III appears in
the communication antennas, The antennas of Intelsat I were symmetrical about
the spin axis to maintain constant antenna gain, Intelsat ITT employs a mechanically
despun antenna. This mechanically despun antenna is the most important innova-
tion in this series of satellites, and perhaps the most critical, Special lubricants
are used for the bearings, which are exposed to the hard vacuum of space and a
wide temperature range. Because Intelsat III has no VHT telemetering and tele-
command equipment (these functions are handled at C~band), an additional antenna
at 6 GHz with substantially omnidirectional properties has been provided to receive
telecommand signals for the initial setting up in orbit. The expected lifetime of

the satellite is b years,

The Intelsat I through III satellite designs produced communications systems
that were power limited, even though a high performance ground complex was

provided, This situation began to change with the development of the Intelsat IV
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Table 10-11,

INTELSAT III Characteristics

Type Conical Horn with flat plate
- rcflector, mechanically despun
§ Numher 1
E Beamwidth (4/6 Gllz} 24/14. 5°
Gain  (4/6 Gllz) 16/21 dB
Frequency Band C-Hand
Type Two indepcndent linear single
conversion repeaters
B.W. (3dB) 225 MHz cach transponder
umber Two
Type Front End Two stage tunnel diode amplifier
o
a Front End Gain 31 dB
| & Sys. Noise Figure 7dB
3
§ o i Type TWT
gl S| cain 73 dB
| Power Out 12 Watts
EIRIheam cdge) 22 ABW per transponder
2 8| Type Spin
E 2| capability No Data
E E § Primary 10, 720 solar ccll array - 161 watts
H 2 at lapnch
g nc: &} Supplement 1 rechargcable 20 cell nickel-cadmiuny
& bauery
= Comm, Powcr Needs 99 watts
B Size Cylindrical 55.4" diameter, 417
g height without antenna
Weight (at liftoff) 632 lbs
{in orhit) 322 lbs

Polarization: Tranamit - RHC
Receive -~ LHC
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spacecraft. When the spot beams of this satellite are employed with high perfor-
mance ground terminals, a bandwidth limited system results. The Intelsat IV
- satellites' communications subsystem consists of global receive and both gldbal and
spot beam transmit antennas connected to a 12~channel repeater that provides high
power amplification for each channel individually, Each of these 12 channels has
a bandwidth approaching 40 MHz, thereby providing capacity for about 500 com-
munications circuits. The satellite has the capability, using the EC antenna, for
relaying 6000 half duplex telephone calls, or 12 color television programs, or
any equivalent combination of such transmissions. The communication system
of Intelsat IV is depicted in the block diagram of Figure 10-4. Communications

characteristics of the satellite are summarized in Table 10-12,

The spot beam transmit antennas represent the most significant departure
from the previous satellite designs of the Intelsat series. Two of these antennas,
each a parabolic disc of 50 inch diameter, are mounted on the despun control
mast of the satellite, The entire RF portion of the spacecraft is despun. Pointing
of the spot beams is prefixed on the ground, These high gain antennas with beam-
widths of about 4 degrees, can be used to provide spot coverage in Europe and
North and South America, or they can be employed to provide intracontinental
coverage within specific countries. The basic physical configuration of the
Intelsat IV spacecraft is depicted in Figure 10-5,

10,4 GROUND TERMINALS

The Intelsat ground complex that provided communications through the Early
Bird uatellite consisted to a large extent of modified versions of terminals initially
constructed to participate in Telstar and Relay program experiments (see Sections 6
and 7). The participating terminals were listed in Table 10-4, The Andover earth
station, originally built for Telstar, was modified during the period July 1964
through March 1965, The Goonhilly Downs earth station, also an original Telstar

terminal, was withdrawn from service in September 1964 for modification to work
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Table 10-12, INTELSAT IV Characteristics

Type Global Receive, Global Transmit: conical
horn with flat plate reflection. Spot Beam:50
parabolic reflector ¥, Omnidirectional
command receive antenna and omni-
dircctional telemetry transmit.

a Number 2 of each of the above communications antennas
4;3 Xmit, Beamwidth (global/spot beam) [17/4.5°
< Xmit, Gain {global/spot) 20,5/31.7 dR

Eqlarization Circular

Frequency Band C-band

Type Lincar or limiting ** single RF conversion repeater

B.W. (-1 dB) 36 MHz

Number 12

Type Front End Tunnel Diode Amplifier
g Front End Gain 13.8 dB
E Sya. Noisec Figure 8.2dB
=
z
o
@
g Type TWTA
“ 8 | cain 58 dB
5 Power QOut 8 dBW per transponder
.5/34.2 dBW transponder at hea
EIR P***(global/spot beam) gﬁgz/ e per transponder "
. Spin with hydrazine jet attitude & orbital ****
= 8| Type control. Stationkeeping to +0,25° North-South and
§ Bl Capability +0,12° East-West, Attitude control to +0,18°,
N
& 2| Primary 42, 240 solar cells - 750 watts at launch
E § Supplement Nickel-cadmium hatteries
[+]
]
H
% Comm, Power needs No Data
By
— Size Cylindrical: 7'9" diameter, 17'4" height overall,
g 9'3" solar drum alone
a
(3 Weight (at liftoff) 3094 lhs
(in orbit}) 1544 lbe
Notes: * Beam pointing adjusted prior to launch, Pointing cannot be changed by ground
command,
*¥ Selectable by ground command
*** Measured in anechoic chamber
Kok K

Both north/south and east/west stationkeeping provided,
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with Early Bird. Prior to modification, the performance of Goonhilly was about

3 dB down as compared to Andover and PleumeurBodou. The modification improved
the terminal's performance by reducing profile inaccuracies of the reflector, reducing
aperture blocking from the feed support structure, and reducing feeder losses,
Characteristics of the Andover, Goonhilly, and Raisting earth terminals, as con-

figured for operation with Early Bird, were as indicated in Table 10-13.

Second generation earth terminals were developed to take advantage of the
wider bandwidths of the Intelsat II satellites, These earth stations employed more
advanced equipment than had previously been available, including solid-state designs,
masers of wider bandwidth, Cassegrain feed antenna systems, and dual carrier
receiving chains, A technical summary of three typical second generation earth
stations that participated in operations with Intelsat II satellites is given in Table 10-14,
The original Intelsat I terminals were also used to operate in the Intelsat II system.

These terminals were not significantly modified from their Early Bird configurations.

In building the third generation stations for operation with Intelsat III, new
500-MHz bandwidth cooled parametric amplifiers were developed, as well as
500-MHz bandwidth high power traveling-wave tube transmitters capable of over
6 kW of multicarrier power. Antenna sizes become relatively standardized at
97 feet diameter, partly to compensate for the somewhat higher noise temperatures
resulting from the wideband feed systems, and partly to obtain a small performance
margin for the terrestrial stations, The characteristics for two third generation

earth stations, Paumalu (Hawaii) and Fucino (Italy), are presénted in Table 10~15,

With both global and spot beam transponders, Intelsat IV will allow earth
stations to operate with a large number of carriers, This will result in inter-
modulation distortion becoming an increasingly important consideration in earth
station performance. The higher capacities associated with Intelsat IV require
existing earth stations to verify a greater linear deviation capability, evaluate

their threshold extension demodulator performance at the larger capacities,
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Table 10-13.

Characteristics of Typical Early Bird Earth Terminals

Noise Temp.

509K @ 7.5° Elev.

509K @ 7.5° Elev.

Terminal Terminal
Feature Andover * Goonhilly Downs Raisting
Type Conical Horn Parabolic Parabolic
P Reflector Reflector Reflector
g Aperture Dia, 67.7 ft 85 f 82 ft
£ |Receive Gain 58 dB 58.5 dB 58.4 dB
<
Efficiency 70 - 75 % 55 - 60%** 55 - GO%*+*
Rec. Beamwidth
(3 dB) 0.23° 0.2° 0.2
o Type Traveling Wave Traveling Wave
E § Preamplifier Ruby Maser Ruby Maser Maser
Q W
& 2 |Bandwidth 25 MHz @ 3 dB Pts. |25 MHz @ 3 dB Pts, |20 MHZ @ 3 dB Pts.

50°K @ 7.6° Elev.

T E |Type Amplifier TWT TWT TWT
u ¥
§ £ |Bandwidth 30 MHz 30 MHez 30 MHz
[ 2]
= Power OQutput 3 kw 3 kW 2 kW
=T4]
. Monopulse Programmed
% Type Autotrack No Data Tracking
& |Accuracy +.01° No Data +.01°
7 & SIG/T 41 dB/OK ** 41,5 dB/ K ** 41.5 dB/ K **
e E é EIRP 125 dBm ** 124 dBm ** 123. 5 dBm**
é g |Transmit Feed No Data No Data Mo Data
= g
& 8 |Receive Feed No Data No Data No Data
e
=
<o : A
= 210" Diameter 154' Diameter
=
é Radome Rubberized Dacron None Rubberized Dacron
§ Type Facility Fixed Terminal Fixed Terminal Fixed Terminal
Notes: * The terminal at Pleumeur Bodouhad essentially the same characteristics

** Derived value based on data available.
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Table 10-14. Characteristics of Typical Second Generation Earth
Terminals
Terminal
Terminal -
Buitrago, Brewster Flats, .
Feature Spain Washington NASA Ship

Type Cassegrain Cassegrain Cassegrain
g Aperture Dia. 85 ft gh ft 30 ft
3 Receive Gain b8.4 dB 58,4 dB 47,8 dB
é Efficiency 60%* 60% * 41%*

Rec. Beamwidth 0.2%* 0,2°* 0.57*

Receive
System

Type
Preamplifier
Bandwidth

Noise Temp.

Cooled Parametric
Amplifier

No Data

58°K @ 10° Elev.

Maser
30 MHz (-1 dB)
50°K @ 10° Elev.

Cooled Parametric
Amplifier

110 MHz (-3 dB)
135K @ 7.5° Elev.

Transmit
System

Type Amplifier
Bandwidth
Power Output

Klystron
60 MHz {-1 dB)
10 kW

Klystron
30 MHz {-1 dB)
10 kW

Klystron
70 MHz (-3 dB)
10 kW

% e |TVpe Autotrack Autotrack Monopulse Autotrack
s 5
& Accuracy No Data No Data +0.08°
P 0 0, . o
s §G/T 40.8 dB/ K * 41.4 dB/ K 26 dB/ K
Q
= E g|lEIRP 130 dBm * 130 dBm * 122 dBm maximum
é 8 {Transmit Feed No Data No Data Linear **
0
& § Receive Fead No Data No Data Linear **
e
£ |Radome None None Inflatable
e
% 53 ft diameter ***
E Type Facility Fixed Terminal Fixed Terminal Shipboard
Notes: * Derived value based on data available.

** Modified to circular for Intelsat III operations.

*** Not employed operationally.

& K ok

10-32

Transmit-LHC and Receive-RHC,

Three of these terminals existed on board the Redstone, Vanguard, and Mercury,
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Table 10-15. Characteristics of Typical Third Generation Earth Terminals

Terminal Terming
Feature Paumaiu, Oahu Fucino, Italy
Type Cassegrain Casscgrain
g Aperturce Diamoeter 97 1t 90 It
*2 Receive Gain 60 dB * 59.9 dB
<« Llficieney GO, ** TO%*
Rec. Beamwidth 0.16° * 0.17"%

Receive
System

Bandwidth

Noise Temp,

Type Preamplificr

Helium Cooled Paramps.
500 MHz
50K @ 7.5" Klev.

Ilelium Cooled Paramps.
500 MII=

] oo,
AWK @7.5 Elev.

= Type Amplificr TWY TWT
=
é 4 |Bandwidth 500 MIT= SO M1ty
w
& & |Power Output 6 kW GkW
W iType Autotrack and Manual Autotrack, Program Track,
'—5 and Manual
3
& JAccuracy No Data Autotrack -0, 02"
C ol Oy . Oy
§ =1 % G/ 43 dB/ K 42,5 dB/S K
=l
i Ll
& Flgmp 129 dBm* 129 dBm *

Polar-
ization

Transmit Feed

Reecive Feed

No Data

No Data.

Lincar or Circular

Linear or Circular

Installation

Radome

Type Facility

Noane

Fixed Toerminal

Noncg

[Fixed Terminal

Z
=}
o+
e
m

* Derived value based on data available,
** Assumed value based on performance typically realized lor this type antenna,
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augment existing group delay equalization to the larger bandwidths associated with
higher capacities, and replace certain traffic bearing and monitoring filters whose
bandwidths are related to channel capacity. .

Fourth generation earth stations have already been constructed at Talkeetna,
Alaska, and Pulantat, Guam. At this writing, the publically available literature
describing the performance of fourth generation Intelsat terminals appears to be
quite limited, In general, they are required to provide a recelve gain of at least
57 dB and a receive G/T of 40.7 dB/°K. Both the transmit and receive chains will,
as a goal, provide a 500-MHz RF bandwidth, Terminal transmitting feeds will be
left~hand circularly polarized and receive feeds right-hand circularly polarized.
Each terminal will, as a minimum, contain both an autotrack and manual tracking
capability.

10,5 EXPERIMENTS

Since the major objective of the Intelsat program has been to establish an
operational international commercial satellite communications system, the number
of experiments and the instances of utilizing innovative equipment types have been
somewhat limited. In spite of this, a number of experimental activities of major
significance have taken place and indications are that this type of activity will

accelerate in the future,

An example of past activities is the Early Bird tests to evaluate the sub-
jective effects of long transmission delay on telephone subscribers and techniques
for reducing echo caused by two wire user terminations to acceptable levels.
Although the feasibility of synchronous satellite communications had been success-
fully demonstrated in the Syncom program, conclusive results in the two areas
indicated had not been obtained, Furthermore, prior to Early Bird, the opera-
tionél experience required for a reliable commercial system was not available,
The successful operation of Early Bird (Intelsat I), for more than 3 years,

demonstrated public acceptance of space communications., In so doing, it proved
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conclusively that, for single synchronous earth satellite repeaters, transmission
delay and echo were not serious problems in the realization of an operational
commercial system, Earth station experience gained at Andover, Goonhilly Downs,
Pleumeur Bodou, and Fucino demonstrated that efficient reliable communications

could be maintained and heralded the introduction of multistation operations.

Another area of major experimental interest to Intelsat has been modulation
techniques for multiple access of a single satellite transponder, An important
inherent advantage of communications via satellite is that a large number of widely
separated earth stations can communicate with each other simultaneously through
the same satellite, Through multiple access, the potential exists to greatly increase
system flexihility and to reduce the size and equipment complexity of the space
subsystem. As a result, techniques for multiple access have received a great deal

of attention for both military and commercial applications.

At the time of Early Bird, frequency modulation and frequency-division
multiple-access (FDMA) were the common approaches to RF modulation and multiple
access. Both were favored because of their compatibility with existing hardware.

It was also desirable at that time, due to limitations on realizable satellite power
and weight in orbit, to operate spacecraft repeaters as hard limiting transponders.
This approach to repeater design provided maximum efficiency in converting pri-
mary d¢ power into radiated RF power. However, the nonlinear transfer function
of hard limiting transponders results in intermodulation among the various
independent carriers existing in an FDMA system and thereby limits the potential

system capacity somewhat,

A means of avoiding the nonlinear repeater problem is to operate with only
one carrier through the satellite transponder at any one time., This can be accom-
plished by having the earth stations transmit their information in bursts rather than
continuously as in FDMA, and by synchronizing these bursts so that they enter

the transponder in a nonoverlapping sequence., Such a system is called time-division
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multiple-access (TDMA), Intelsat's interest in TDMA started in the early stages
of commercial satellite communications in 1964, and in 1965 work was initiated

on the MATE program, This 3-terminal system operated at 6 Mbps and had a pre-
assigned capacity of 72 channels, The field testing of MATE, the first TDMA sys-
tem to be so tested, was conducted via Intelsat I in August 1966, The tests clearly
demonstrated the feasibility of TDMA and indicated that burst synchronization

to accuracies in the low nanosecond region could be achieved if such accuracy were

required.

Both the initial FDMA and TDMA systems employed fixed preassigned alloca- -
tions of satellite transponder time, frequency, and power. Unfortunately, the pre-
assigned approaches to multiple access, while providing excellent quality and ser-
vice, have a poor working flexibility and use satellite spectrum and power inefficiently
by providing a poor "fill factor," Fill factor can be viewed as the relationship of the
total voice channel capacity of a satellite transponder to the average number of
such channels actively employed during the busy periocd. When fixed assignments
are made, there are numerous instances where channels stand inactive. Recog-
nizing the need for more efficient systems, Intelsat began to consider demand
access approaches to multiple utilization of the same satellite transponder. In
demand access, the general concept is to assign nonoverlapping allocations of
gatellite power and time-frequency spectrum fo users, in real time, as their
demand for service occurs, Both TDMA and FDMA systems providing demand-

access service are theoretically feasible,

An FDMA demand-access system given extensive consideration by Intelsat has
become commonly known as the SPADE system. SPADE has been designed for
links ranging from fractional requirements to 12 and 24 channels and is a PCM-
PSK-FDMA system. The development of SPADE was begun in‘1964. The term
SPADE is derived from Single-channel-per-carrier, Pulse-code-modulation,
multiple-Access, Demand-assignment Equipment, The salient features of the SPADE
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system include digital PCM encoding of voice on a single channel per carrier, the
ability to transmit to the satellite only during talker activity, quadriphase PSK
modulation, system self-assignment of channels, and operation with standard manual
or automatic international signaling and switching systems, The ability to deactivate
earth terminal transmissions during periods of talker inactivity tends to compensate
for having to operate satellite transponders in a backed-off mode such that linear
transfer functions are provided, The system is compatible with the Intelsat II, III,
and IV satellites. It was tested between Andover, Maine, and Cayey, Puerto Rico,
over Intelsat II; and later between Etam, West Virginia, and Goonhilly Downs,
Cornwall, over Intelsat ITT, The SPADE system is now considered operational and has
been assigned to transponder 10 of Intelsat IV, This particular transponder does

not have access to the satellite's spot beam antennas,

Following the MATE system success, Intelsat started planning for the next
generation of TDMA systems, with emphasis on extending the state-of-the-art in
all technological areas relating to TDMA, The resulting experimental system,
called MAT-1, is a PCM-PSK-TDMA system for 12 to 24 chamnel links, It is
based upon a 50-Mbps transmission rate that yields over 700 8-bit PCM channels
in a 10-station network configuration, A unique feature of this system is its

orientation toward demand assignment,

The Kokusai Denshin Denwa (KDD) Research Laboratory has developed a
50-Mbps TDMA system, called TTT, which has time-assigned traffic blocks,
including a block devoted to an experimental pulse-code modulation, time-
assignment speech interpolation (PCM-TASI) design., The MAT-1 and the TTT systems
are compatible; field tests of these terminals were conducted in July 1970, over

Intelsat III (F-4) among stations in Hawaii, Japan, Australia,

Another technique being actively developed is that of placing a time-division
switching capability on-board the satellite itself. This technique will become par-
ticularly attractive as satellites providing multiple spot beams come into use. In
this technique, known as Satellite-Switched Multiple Access (SSMA), all stations'
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transmissions are frame-synchronized by destination as they enter their respective
satellite receivers., Following amplification and, perhaps, down conversion, these
signals enter the satellite distribution subsystem that acts as a time-division switch.
In this switch, all the traffic intended for a particular destination is sequentially
directed toward the output amplifier and antenna for that destination. The receiving
system demodulates a single carrier, and the frame synchronization is now source-
oriented rather than destination-orienféd.

Still another area of major concern to the Intelsat program has been link pro-
pagation, Considerable detailed data on satellite link propagation characteristics
at the 4- and 6-GHz frequencies has been obtained. This includes items such as
atmospheric absorption as a function of weather conditions; scintillation and fara-
day rotation as functions of time, geographic location, and sunspot activity; and
multipath as a function of antenna elevation angle, As the geostationary orbit has
tended to fill up with satellites operating at 4 and 6 GHz, Intelsat has become
interested in link propagation characteristics for spacecraft communications systems
operating at frequencies above 10 GHz. This interest is evidenced in the Comsat
propagation experiment to be conducted at 13 and 18 GHz by NASA's ATS-F
satellite. This experiment is designed to gather data on satellite signal.attenuation
at 13 and 18 GHz caused by atmospheric hydrometeors at ground stations located
in representative climatological areas, The data obtained from this experiment.
will provide the basis for establishing minimum power margins needed for opera-
tion at 13 and 18 GHz.

10,6 OPERATIONAL RESULTS

Since the Intelsat program has produced a commercial communications
system, the system's operational results obtained during each of the four genera-
tions of the space subsystem are of considerable interest, Early Bird was launched '
on April 6, 1965, and by April 22 it was sufficiently synchronized for the commence-
ment of communications testing, Two groups of tests were conducted concomitantly: |

the Performance Test Plan to determine how well the spacecraft performance in
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orbit met contract specifications, and the Experimental Test Plan to determine
system parameters when the spacecraft is used with the operating ground stations,
The Performance Test Plan was completed in four days and included measurement
of the spacecraft's effective radiated power (ERP), receiving sensitivity, trans-
ponder gain and frequency response, noise power ratios (NPR), intelligible cross-
talk, antemna patterns, polarization, and insensitivity of the command system to
interference, The only hotable failing of the Performance Test Plan was that the
specification for intelligible crosstalk of -45 dB could not be met with TWT No, 1,

For this reason, TWT No, 2 was used for all commercial operations.-

The Experimental Plan tests were conducted for 18 hours per day for a week.
System characteristics with a variety of loading conditions were measured for all
stations, It was determined that the 240 circuit capacity could be realized by the
four high-capacity stations and that a 6-dB margin existed in fair weather. It
was also determined that the antenna gain and receiving sensitivity for the four
large stations were similar to within 1 dB,

Tests on system characteristics for monochrome TV were performed until

all stations reached agreement on the optimum operating parameters,

Three weeks after launch, the spacecraft and the earth stations were properly
tested, and the space segment of the system was ready for use, The terrestrial
network operators then began circuit lineup, For the 120~channel multiplex system
to be used for the first commercial service, it was necessary to allow 4 weeks
for adjustments at a circuit level both in the U, S. and in the four countries in
Europe. These tests were completed on schedule, and the system was ready for

operation in June,

After a series of successful demonstrations with telephone circuits and television
service, commercial operation was initiated on June 28, 1965, Figure 10-6 sum-
marizes commercial usage for telephone and television traffic through November 1967,

The satellite contribution to out-of-service time was zero in the Early Bird system,
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All loss of service was attributable to the seven major earth segment elements --
the five earth stations and the U,S. and European interconnects, The reliability
history of this service through early 1967 is shown in Figure 10-7 in terms of
cumulative percentage outage time, Early Bird was placed in retired reserve

on January 20, 1969, after Intelsat III achieved operational status, It was re-
activated for a brief period between June 1969 and August 1969 when temporary
difficulties were encountered with the'despun antenna of an Intelsat III satellite.
The operational lifetime of 8-1/2 years far exceeded the design lifetime of 1-1/2

years for this exceptionally successful satellite program.

The first Intelsat I satellite (F-1) was launched in October 1966. Although
it failed to achieve stationary orbit, the successful functioning of the communica-
tions subsystem permitted an 8-hour-per-day voice service to be established between
the earth stations in Hawaii and Brewster Flat, The highly elliptical, inclined
orbit realized reduced the commercial utility of the F-1 satellite to negligible
proportions, but the experience with its functioning subsystem proved to be invalu-
able in preparing for operations with its successors. Live television between Hawaii
and the U,S, mainland was inaugurated via (F-1) on November 18, 1967,

Intelsat II (F-2) and (F-4) were employed for service in the Pacific area.
During the time when the (F-4) satellite was undergoing final positioning maneuvers,
its longitude was allowed to approach closely that of (F-2) for the purpose of making
intersystem interference measurements. At Paumalu, the 85-foot antenna was
operating with (F-2) while the 42-foot antenna was available for experimental work
with (F4), Experiments and measurements of interference were made as the
satellites approached to within 0,5° of each other, It was concluded from these
interference measurements that the Intelsat II system can be safely operated with
a minimum of 1,6° of longitude separation between satellites, Both of these satel-
lites and (F-3), which supplemented Early Bird in the Atlantic area by providing

wide area service, have operated satisfactorily providing commercial communica-~
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tions service. Multiple-access service was successfully initiated with the Intelsat II
(F-2) satellite on January 27, 1969,

The first Intelsat III satellite (F~1) was launched in September 1968, but no
orbit was achieved, Thia was followed by the launch of Intelsat HI (F-2) on December
18, 1968, This satellite began operational service over the Atlantic on December 24,
1968, Tt operated satisfactorily until June of 1969, at which time sticking of the
mechanically despin antenna was encountered. This was determined to be due to a
thermal gradient problem across the bearings of the despin motor, By August of
1969, the satellite was back in operational service, It continued to be employed
until February 1, 1970, when Intelsat [IT (F-6) assumed the operational load over
the Atlantic Ocean and (F-2) was retired from service. Intelsat III (F-3) was launched
into orbit over the Pacific on February 5, 1969. It was placed into operational
service on February 16, 1969, and continued to be employed in the Pacific location
for about 6 months, F-3 was then repositioned over the Indian Ocean after losing
about 6 dB of transponder gain due to a malfunction in one stage of the receiver
tunnel diode amplifier, The reduced channel loading associated with operations at
the Indian Ocean location permitted the satellite to continue in a useful capacity.
Intelsat IIT (F-4) replaced (F-3) in handling the Pacific Ocean operational traffic,
Intelsat III (F-7) was successfully placed into service over the Atlantic on May 8,
1970, to supplement (F-6). As of mid-1971 Intelsat III (F-3), (F-4), (F-6), and (F-7) and

the associated ground complex continue to perform essentially as expected,

The first Intelsat IV satellite (F-2) was successfully launched into orbit over
the Atlantic Ocean on January 25, 1971. Communications tests began on February 7,
and on March 26 earth station antennas in 14 countries, then operating with the
Intelsat IIY (F-6) satellite, began a simulataneous mass pointover to assume operational
service through the Intelsat IV (F-2) satellite. Fabrication of follow-on satellites
in the IV series continues on schedule, As of mid-1971, future Intelsat IV launches

were tentatively planned as follows:
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Pacific Third Quarter 1971

Second Atlantic Fourth Quarter 1971
Pacific spare Second Quarter 1972
Aflantic spare Last Half 1972
Indian Ocean _ 1973

Operational traffic projections for the composite Intelsat system are shown
in Figure 10-8, The figures from 1971 onward reflect the minimum projected yearly

growth rate of 15%. Figures show voice channels or half duplex circuits.
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Figure 10-8, Intelsat Traffic Growth Projection (1965-1980)
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SECTION 11 - MOLNIYA-1

11.1 INTRODUCTION

For the Soviet Union, which occupies about one-sixth of the earth's surface,
an efficient system of space communications is a vital necessity. The country covers
nearly 6000 miles from east to west and over 2500 miles from north to south, and is
crossed by 11 time zones; in addition, ‘there are tremendously varied climatic
conditions and vast areas of rugged terrain. For the United States, geostationary
orbits over the earth in the equatorial plane have been favored because-they permit
communications 24 hours per day. For the Soviet Union, whose territory extends
up to 80°N latitude, however, such an orbit is not ideal. It does not ensure commun-
ications at earth station elevation angles greater than 7. 5° for all areas that lie
above 70°N latitude. The Soviet Union's communication satellites system, using the
Molniya-1 spacecraft, circumvents this difficulty by employing the highly eccentric

elliptical orbits described below.

The orbit chosen for Molniya-1 satellites is interesting for two reasons,
First, it is highly elliptical, with an apogee of 40,000 km in the northern hemisphere
and perigee of 500 km in the southern ﬁemisphere, with a period of revolution of
nearly 12 hoursa. Thus the two daily orbital apogees for any givén satellite occur over
earth longitudes 180° apart. Second, the 'angle of inclination of 65° means that the
useful period, during one of the two daily orbits of a spacecraft, when the satellite
can be employed for radio communication between distant points in the USSR, is
between 8 and 10 hours. If three Molniya-1 communication satellites are
launched at regular intervals into identical elliptical orbits whose planes are shifted
relative to one another by 120°, they will form a system that ensures 24 hours per
day communications for the entire USSR. It should be noted that this orbit also
affords the possibility of continuous communication between the European USSR and
North and Central America, thereby establishing communications between most

parts of the northern hemisphere where between 75 and 80 percent of the earth's
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population resides. The orbital characteristics of the Molniya-1 satellites launched

as of mid-1971 are shown in Table 11-1,

It should be [urther noted that an additional important advantage accrues to
the Soviet Union with the selection of an elliptical orbit, For a launch vehicle of
given thrust operating from the appropriate Soviet launch site, two or three times
the weight can be placed into the selected elliﬁtical orbit as into an equatorial
synchronous one. This fact helps explain the uncommonly large weight of about
2000 pounds associated with the Molniya-1 spacecraft when compared to the more

modest weights of the United States' geostationary spacecraft.

In addition to its unigque orbit, the Moliya program has been responsible for
a number of other innovations in satellite communications technology. Major
advances provided by the Molniya-1 satellites included a demonstration of an opera-
tional system using flywheel stabilization, solar panels that were continually main-
tained in a 90° aspect relative to the sun line by proper positioning of the body of
the spacecraft, and parabolic antennas that tracked the earth independent of the
main body of the satellite. This program also produced the first system supplying
a regular space television distribution scrvice to a large number of receiving

terminals of wide geographic dispersion.
11.2 SPACECRAFT

The Molniya-1 spacecraft is shown in Figure 11-1; its principal communica-
tion parameters are summarized in Table 11-2, In [orm, the spacecraft is cylin-
drical with conical ends having a diameter and height of about 5 and 10 feet, respec-
tively, Its more apparent features include the six solar cell panels and the two
parabolic communication antennas (one in reserve). Within the hermetically sealed
body are the primary transponder (along with the complete spares), an electronic
computer for equipment control, a gyroastahilizer, chemical batteries, and varicus
electronic equipment. The fact that the spacecraft is gyro, and not spin-stabilized,

required the inclusion of equipment for internal temperature regulation; this is
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Table 11-1.

Molniya-1 Communications Satellites

Orbital Parameters
Period of Orbital
Apogee Perigee Revolution Inclination*

Satellite Launch Date (km) (km) Hr, JMin {Deg.) Status
AMolniya-1 A April 23. 1965 39.381 197 11:48 65 In orbit
Molniya-1 B Oct. 13, 19635 10, 000 301 11:59 63 March 17. 1967*~
Molniya~1 C April 25. 1966 39. 300 199 11:50 54. 5 In orbit
Molniya-1 D Oct, 20. 1966 39,700 185 11:53 64.9 Sept. 11. 1968**
AMolniya-1 E Aay 25. 1967 39. 810 160 11:55 641, 8 In orbit
Molniva-1 F Oct. 3. 1967 39,600 165 11:52 G5 AMarch 4. 1969~
Molniya-1 G Oct, 22, 1967 39,710 156 11:54 B 7 Dec. 31. 1969*~
Molniva-1 H April 21, 1968 39.700 160 11:53 63 in orbit
AMolniya-1 J Tuly 5. 1968 39.770 470 11:35 63 May 12, 1971**
Molniya-1 K Oct, 5. 1963 39.600 190 11:52 82 In orhit
Molniya-1 L April 11. 1969 39.700 170 11:33 6o In orbit
Molniyva-1 A July 22. 1969 39,500 32¢ 11:51 G619 In orbit
Molniya-1 N Feb. 19. 1970 39.173 187 11:13 55,3 In orbit
Molniya-1 P June 26. 1970 39, 327 546 11:58 65. 4 In orbit
Molniya-1 R Sept. 29. 1970 39,300 480 11:46 62. 5 In orbit
Molniya-1 8 Nov. 27. 1970 39.729 626 11:58 635. -1 In orbit
Molniya-1 T Dec, 25. 1570 39. 600 180 11:52 G5 In orbit
Molniya-1 U July 28. 1971 39,300 170 11:45 65,1 In orbit

*Qriginal parameters supplied by Novosti.
**Date of orbit decay.




1 - body; 2 - equipment rack; 3 - heat regulating system rack; 4 - heat
regulating system radiators; 5 - solar cell panels; 6 - communications
antenna; 7 - antenna drive: 8 - flywheel gyro; 9 - optical solar orientation
sensors; 10 - optical earth orientation sensors; 11 - pressurized air con-
tainers: 12 - correcting engine; 13 - radiometer; 14 - vacuum shield insul-
ation.

Figure 11-1, The Molniya-1 Communications Satellite (Cutaway View)
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Table 11-2, Molniya~I Spacecraft Description

Antenna

Type Parabolic Reflector (3' dia,)
Number 2 (including one reserve)
Beamwidth (-3dB) 22°

Gain 16-18 dB

Polarization Circular

Frequency Band 800-1000 MHz, **

Type Nonlinear frequency translating
Bandwidth No Data ;
Number 1+ 2 reserve
o Type Front End Silicon diode mixer
S Front End Gain No Data
M| B
43 Sys. Noise Figure 9-10 dB
[F}
(=1
o e Type 2-Stage TWT
E Gain 60 dB
Power Qut 40 W for TV or 14 watts per channel
for duplex multichannel telephony
EIRP 30 dBW*
= §
;5; g Type Gyro
o Capability No Data
§ § § Primary Silicon Solar Cells, 500-700 watts output
= =
‘éqa; r?.. 2 Supplement Battery
&
= Comm, Power Needs No Data
)
% Size Cylindrical: height - 10'; diameter - 5'
© Weight 2200 Ibs.

*Derived value based on antenna gain and transmitter output power,
**Some Molniya-1 satellites operated in the 3400~ to 4100~MHz band possibly as
a checkout for prototype Molniya-II downlink equipment.
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accomplished by means of a radiator-condenser (in a cylindrical configuration about

the spacecraift body) and a heat panel (in the form of a flat ring).

When the spacecraft attains its final orbit and has separated from the last
stage of the launch vehicle, the solar cell panels, originally folded along the body
of the satellite, are automatically extended. The orientation system is awitched on,
the satellite's tumbling motion is arrested by gas-jets, and the body of the satellite,
together with the solar cell panels, is 'oriented toward the sun to maximize the power
for the solar cell system. During the entire orbifal trajectory, the spacecraft
attitude is maintained by a gyro-stabilizer driven by an electric motor so that the

solar panels remain directed toward the sum,

After sun acquisition, one of the on-board antennas is directed towards the
earth by highly sensitive earth sensors. The earth is acquired, and this antenna
continues to track the earth during the entire period of communication. Should it
become necessary to switch to the standby antenna, all that is required is to rotate

the body of the satellite 180° about its longitudinal axis, using the gas-jet stabilizers,

A block diagram of the transponder "Alpha" used in the Molniya-l spacecraft *
is shown in Figure 11-2. The principal communication parameters are summarized
in Table 11~2. Both signal reception and transmission are accomplished with the
same parabolic spacecraft antenna; isolation filters are used to separate these
signals, The signals received from earth stations operating at two different frequen-
cies are further separated by an input duplexer. After intermediate frequency con-
vension in a silicon diode mixer, the signals are amplified and then amplitude-
limited. After passing through a parametric-diode up-converter and output duplexer,
the signals are amplified in a two-stage TWT amplifier. The first TWT operates in
a linear mode, while the second TWT operates in a saturated mode, A ferrite
isolator is employed between TWTs for matching, For duplex telephony, the power -
oufput is 14 watts per channel. For television, the output power is the maximum
available of 40 watts. Design lifetime of the later Molniya-1 spacecraft was about 2

i
years as compared to 1 year for initial versions,

11-6



L-T1

REPEATER N,

]
:
!

-lf_l

—
L
|
|

]

e e B e

D

R o e e

T

!
J
|
— |
L _

4o

| |
| !
: I LONT | —1 LO N2 ]
| O—» m REPEATEANZ ——ae} |
| O—» w3 | REPEATEA N3 =—Q) l
I 4
[ i r |
0 ®2
b = DUFLEXER
ESS = EARTH STATION SIMULATOR
Fl = FERRITE ISOLATOA
IF = INTEAMEDIATE FREQUENCY AMPLIFIER
L = LIMITER
L¢ = LOCAL OSCILLATOR
Moo= MONITOR EQUIPMENT
FT = PROGRAMMED TIMER
RS = AEPEATER SWITCHING
[} = FILTER
TWT - TRAVELING WAVE TUBE POWER AMPLIFIER

Figure 11-2. Molniya-l Communications Repeater




11.3 GROUND TERMINALS

The ground terminal antennas (transmitting and receiving) are 50-foot diameter
paraboloids with Cassegrain feeds. They are mounted on rotating units permitting
a tracking accuracy of a few angular minutes; tracking is either preprogrammed
or self-tracking. To decrease losses in the feeder waveguide equipment, buildings
are constructed in direct proximity to the rotating units, The parametric amplifiers
of the receiver, along with the receiver duplexer and directional coupler, have been
installed in an antenna cabin behind the primary reflector. For the output of the
parametric amplifier, the received IF signal is fed to the receiving equipment located
in the building. The high frequency power output from the transmitter building is

delivered to the antenna feed along a waveguide through the rotating junction.

The transmitting unit consists of an exciter, frequency modulator, power
amplifier and supply, monitor, and heat exchanger. The transamitier itself is a
5-kW multicavity klystron. The video bandwidth available for the television mode is
5 MHz. For more efficient transmission of television and telephone signals, there
are standard preselection systems. High transmitter carrier frequency stability
is achieved by utilizing a quartz master oscillator in the exciter with subsequent

multiplication and mixing with the FM modulator signal.

The receiving equipment consists of operating and monitoring receivers.
Each consists of a remote parametric amplifier with IF preamplification, IF
amplifiers, limiters and demodulators for the television and telephone modes, and
supply sources. Moreover, a receiver monitor, video monitor, and received signal
level recorder are included as part of the receiving units. The parametric amplifi-
ers of the receivers are two-stage regenerative amplifier-converters. In the
Molniya-1 system, the two-stage paraﬁletric amplifiers operate at both normal and
liquid nitrogen temperatures. The noise temperature of the uncooled pai'amp is
150° K, and of the cooled is 80° K, The cooled paramp is installed ahead of an
igolating filter., The frequency passband is sufficient for quality transmission of

black and white or color television. For transmission of group spectra, frequency
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feedback reduces the passband to 1, 5-2.0 MHz., TFurther details of the ground

terminals are provided in Table 11-8.
11. 4 EXPERIMENTS

Since the Molniya program has produced an operational satellite communications
system, it might be expected thaf there has been little emphasis on expérimentation.
Further, what experiments have been conducted are not well documented in the open
literature available to the Western World. It might be conjectured that, when the
first Molniya-1 spacecraft began to appear in orbit, both the highly elliptical orbit
employed and the th.ree—a.xis stabilized satellite, with its sun-oriented solar panels
and tracking antennas, were considered experimental in nature. Obviously, these
experiments worked out well, since the operational system continued to incorporate
the aforementioned features, Additionally, it is known that the Molniya satellites
have been employed to provide measurements of the earth's environment, The
orbital paths of these satellites carry them through the earth's radiation belts
several times each day, and studies are being made not only of the radiation belts

but also of the effects they have on spacecraft equipment, especially solar cells.
11.5 OPERATIONS

The Molniya~! system was designed for relaying wideband transmission of
either duplex multichannel telephone communications (including telegraph and
facsimile) or television (black and white or color). Initially, operations were of a
point-to-point nature between Moscow and Vladivostok to provide regular telephone
and telegraph exchange between the center of the country and the Far East to transmit
Central Television programs to viewers in the Maritime territory. The first TV
transmission via a Molniya-1 satellite was made on 25 April 1965, just 2 days after
the launching of the first vehicle. Under a Franco-Soviet research program, color
televigion broadcasts have been successfully transmitted between Moscow and Paris '
since December 1967, using Molniya~1 in conjunction with the Secam III system.

This research program followed a previously successful Moscow-Paris
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Table 11-3. Earth Terminal Characteristics

. Terminal
Terminal
Features Moscow/ Vladivostok Orhita
Type Paraholic Parabolic
Cassegrain
Aperture Size 50" diameter 40" diameter
Receive Gain 52 dB* 50 dB*
(2]
g (3.4 GH2z)
& | Efficiency GO, ** 550,%*
5 Receive Beamwidth
(3.4 GHz) 0,4°% 0. 5°%

@ Type Two-stage regen- Two-stage paramp.
E 5 Preamplifier erative Parametric {Cooled to -196°K)
s @ Amp. (Cooled)
~ ©| Bandwidth No data No data
Noise Temp, 230°K 200°K

N
é 2| Type Amplifier Klystron None normally
§ 2| Banawidth 5 MHz Provided
& Power Out 5 kW Provided
Bp
=
.'% Type Self-tracking or Programmed {tracking
# Programmed or self-tracking
& Tracking

| Accuracy No data 08" of arc

=
3 sl G/t 28.4 dB/°K* 27 dB/°K*

S}
= ol EIRP 130 dBM* None*
T
of
E g| Transmit Feed No Data None
< 2
E | Receive Feed No Data No data
__c§ Radome No Data None
— 2
£ 5| Type Facility Fixed Fixed
=

*Derlved value based on data available.
© *¥* Assumed value based on common performance for this type antenna.
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demonstration. The results of this early demonstration were reported in documents

of the 1966 URSI (CCIR) Meeting in Osle, Norway.

Recently, experimental transmissions of newspaper pages, along with televis~
ion transmissions, have been carried out via Molniya-1. Newspaper pages from
Pravda in Moscow successfully transmitted to Khabarovsk (near Vladivostok) have
shown that the imprint of such pages is satisfactory. However, the rapid changes in
propagation path length on the ascent and descent of the elliptical orbit does result
in some peculiarities, such as an apparent bending in the received newspaper type
page. As of mid-1971, equipment was being added to Orbita stations that will
further expand their telecommunications capability by permitting the relaying of

computer data.

In 1967 the USSR inaugurated a space television distribution system, using
Molniya-1 satellites, allowing people in Siberia, the Far East, and the Far North
to see broadcasts from Moscow. As of mid-1971, the number of ground stations
in this network was about 40. A few of the known receiving site locations are
tabulated in Table 11-4, The Orbita stations have achieved an extremely high level
of reliability of not less than 99, 7 percent. A notable event during 1969 was the
huilding by Soviet engineers of an Orbita receiving station in Ulan-Bator, Mongolia,
Thig terminal began operation on February 2, 1970, A station has also been pro-
posed for Havana, Cuba. Recently, a second generation of ground terminals,

Orbita 2, have been described and have begun to be set up,

In addition to the communication functions served by the Molniya-l satellites,
certain spacecraft in the series have been fitted with television cameras and have
successfully transmitted detailed photographs of the earth's cloud cover from
altitudes ranging between 30, 000 and 40, 000 km. These pictures are especially
important in determining meteoreclogical conditions in conjunction with "Meteor"
class weather satellites that photograph the earth's eloud cover from near circular

625-km orbits,
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Molniya-1 satellites have also participated in the Soviet manned space program

by relaying communications between surface ships in direct contact with Soyuz

-6, -7, and -8 and a central control site within the Soviet Union.
Table 11-4. QOrhita Ground Stations
Alma-Ata Kemerovo Novosibirsk
Arkhangel'sk Khabarovsk Petropavlosk
Ashkabad Komsomolsk-on-Amur {Kamchatka)
Bratsk Krasnoyarsk Surgut
Chita Magadan Syktyvkar
Frunze Murmansk Ulan-Ude
Irkutsk Noril'sk Vladivostok
Djezkazgan Gremikha
Yakutsk Abakan Anadyr (or Bilibino)
Yuzhno-Sakhalinsk Dzhezkazgan Oka
Dudinka Gurtyev Ourai
Salekhard Kyzyl Sovetskaya Gavan
Zayarsk Zeia Nehit Dag
Blagoveshchensk Moscow
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SECTION 12 - INITIAL DEFENSE COMMUNICATIONS
SATELLITE PROGRAM

12,1 GENERAL DESCRIPTION

The Initial Defense Communications Satellite Program (IDCSP}, as finally
implemented, was an ocutgrowth of Army participation in NASA's Project Syncom
and an initial system concept calling for medium altitude polar satellite orbits. By
participating in the Syncom Program, the Army gained a nucleus of ground terminals
and operating experience applicable in the IDCSP, (1) The satellites resulting from
the Initial medium altitude system concept were simple state-of-the-art spacecraft,
Subsequent to their design, the Titan ITIC became available as a launch vehicle, (2)(3)
It became apparent that considerable cost savings could be realized by the employ-
ment of separately scheduled and funded Titan IIIC developmental launches to boost
a reduced number of previously designed satellites into near-synchronous equatorial

orbits. In June 1966 the first seven IDCSP satellites were successfully orbited by a
Titan IIIC booster.

The objectives of the IDCSP are listed in Table 12-1.(4)(5) The space subsys-
tem consisting of 26 near-synchronous, random equatorial orhit satellites was placed
into orbit in four separate launches (see Table 12-2), (6)}(7)8) The period immediately
after the first launch was used for system testing between deployed terminals. In
particular, a two-channel duplex link capability between two AN/MSC—46 terminals
was demonstrated. In December 1968 emergency operational links were established
between Hawaii-Republic of Viet Nam (RVN) and Philippines-RVN. In July 1267 the
entire Pacific network was placed in initial operational status and integration of
IDCSP into the DCS was begun. Although designed as an R&D system the IDCSP
almost immediately became an operational system; however, some R&D was con-

tinued in other portions of the system.
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Table 12-1, IDCSP

!Number Description

1 Conduct gystem research, development, testing and evaluation
to determine operational compatibility and utility of the Initial

Defense Cémmunicatioh' Satellite System (IDCSS) o meet user

requirements.

2 Establish a research and development communications satellite sys- |
tem in being, designed for the most part to be directly convertible
and expandable to an operation system through integration and compati-
.bility with the DCS; thereby capable of providing service to
specified users of the National Communications System,

3 Provide an emergency capability for supplementing the Defense
Communications System (DCS) and improving its assurance of
provigion of the minimal essential survival communications for the
National Military Command and Control purposes.

Of the 26 satellites launched, 21 were still operational as of 29 June, 1971,
The 100-1b satellites are spin-stabilized, solar-powered, and they carry no batteries,
They drift randomly (depending upon exact altitude) from West to East at approximately
30° per day so that a single satellite stays within view of a particular ground terminal
for about 4-1/2 days. Originally designed for a mean-time-to-failure {MTTF) of 1.5
years (with a goal of 3 years) experience has shown that figure exceeded by a wide
margin. As late as the first quarter of 1968 projected MTTF was 4,5 years.(g)
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Table 12-2,

IDCSP Spacecraft

Satellite

IDCSP

Manufacturer and Sponsor

Philco-Ford, DOD/DCA/SAMSO

Launch Vehicle Titan THC

Launch Date June 16, 1966 August 26, 1966 January 18, 1967 July 1, 1967 June 13, 1968

Number Launched 7 E}%CTSSPf 8 IDCSP 8 IDCSP 3 IDCSP + 8 IDCSP
DATS 1
DODGE,
LESS

Initial Orbit Data

Period (Min) 1334.2-1344, 0 Launch ‘1330 - 1343 1309, 8-1319 1269 - 1350.6
Failed

Perigee (St. Mi)

Apogee (St. Mi)

20, 913-20, 949

21,051-21,350

20, 835-20, 935

21,031-21,275

20, 509-20, 692

20, 846-20, 894

19, 121-20, 976

21,027-21, 401

Incl. (Deg.) 0.0~0. 2, Most 0.0-0.1 7.2 0.1
0.1
*Statug 1 IDCSP Failed 1 IDCSP Failed 1 IDCSP Failed June 1971

May, 1969,

March 1968,
DATS 1 Failed
May 1970, and
LES 5 Ceased
Radiation
May 1970,

and several others have
a history of intermittent]
performance,

*Status as of 29 June 1971: 21 IDCSP satellites operational,

NOTE: IDCSP satellite transmitters are scheduled to turn off automatically
6 years from date of launch.



In addition to the IDCSP satellites four experimental satellites have been put
into orbit in four successful IDCSP launches, These satellites are also listed in

The ground subsystem consists of three different terminal types (see Table 12-3),
Two large fixed AN/ FSC-9 terminals, which were converted from the ADVENT pro-
gram for use with IDCSP, are located in CONUS at Ft. Dix, New Jersey, and Camp
Roberts, California. Twelve large transportable AN/MSC-46 terminals are deployed
throughout the world, and two are used for training. This terminal was developed for
IDCSP, primarily for entry into the Defense Communications System (DCS). There
are 13 highly transportable AN/ TSC-54 terminals, some deployed and some on standby
for use in case of contingency. All terminals transmit in the 7,9~ 8.4-GHz band, and
receive in the 7.25- 7.75-GHz band. A fourth terminal, the AN/SSC-3, a small ship-
hoard terminal, was developed but never became operational. It would have served

for Navy ship-to-ship and ship-to-shore communications.

Table 12-3, Participating Terminals

Terminal Type Manufacturer and Sponsor Antenna Diameter | Power
(t) (kW)
Modified by Radiation, Inc/
AN/FSC-9 Army-SATCOM 60 20
AN/MSC-46 Hughes Aircraft/Army-SATCOM 40 10
AN/TSC-54 Radiation, Inc. /Army-SATCOM | Four-dish array,
18 ft. effective 5
AN/SSC-3 Hughes Aircraft/Navy-NAVELEX 6 5.

IDCSP has demonstrated the establishment of an operational worldwide military
satellite communication network which provides a wide range of services., Included
in these services are the transmission of wideband data from RVN to Washington and

protected pseudonoise modulation. In establishing the network a number of other
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technological capabilities have been demonstrated, The Titan IIIC was shown to be
capable of transporting and deploying one to eight satellites to near-synchronous
altitude. The deployment process itself was a demonstration of the capability to
perform a fairly complex operation, It consisted of the deployment of eight separate
satellites at timed intervals and with slightly differing initial velocities. Finally,
through the DODGE satellite, experience was gained with gravity gradient stabilization,
A capability to detumble the satellite was demonstrated, but the gravity gradient sta-
bilization system was unable to achieve or to maintain damping to a degree satisfactory

for communication satellites.
12,2 SYSTEM DESCRIPTION

The Defense Satellite Communications System (DSCS8) is one part of the total
Defense Communications System (DCS), which is a worldwide complex of Iong haul,
point-to-point communications facilities. These facilities include transmission via
conventional VLF through HF radio, land and submarine cable, microwave relay,
and tropospheric scatter. IDCSP augments and (where required due to physical or
technical limitations) replaces these conventional communication methods. The
IDCSP provides near-synchronous communication satellites to relay voice and

digital communications between fixed and mobile users. It consists of four subsys-

tems: earth station, launch and deployment, space, and control,

A satellite link is formed by an earth station at each end of the link and one
satellite., Figure 12-1 shows one-half of atypical user~to-user link, The exact
configuration of the earth station/user interface varies depending on the situation.
For example, it is possible for the user (especially tactical or contingency users)
to be connected directly to the Link Terminal, However, in normal DCS use, the
user interfaces with the Technical Control Facility (TCF) as shown in Figure 12-1.
The earth station subsystem includes all the elements necessary to establish satellite

communication channels which serve DCS stations or directly connected users,
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_ There are three types of terminals used in the IDCSP. Two AN/FSC-9 terminals
are located at Camp Roberts, California, and Fort Dix, New Jersey. They are fixed
installations, each equipped with a 60-foot diameter antenna. The AN/MSC-46 link
terminals, deployed at high traffic density nodes, are transportable facilities with 40-
foot diameter antennas, They are primarily intended for use as DCS trunk terminals,
The highly transportable AN/ TSC-54 link terminals are used for extensiﬁn of the DCS
into contingency areas for tributary-type links to outlying activities and as Navy

shore stations. Local conditions dictate the type of transmission facility used as an
interconnect link, Intercomnect links in CONUS consist of leased commercial facilities,

and those overseas are government-owned and operated radio relay or cable facilities,

The launch and deployment subsystem includes: the Titan IIIC launch vehicles,
satellite dispensers and support facilities to implement and support the launch
operations, satellite injection into orbit, the ensuing telemetry readout, and tracking
and ephemeris determinations, Launch phase technical support was provided by the
Air Force Satellite Control Facility (SCF). Since the completion of the launches the
SCT has provided orbital tracking data and telemetry monitoring to determine satel-
lite health. This information is fofwarded to the Satellite Communication Control
Facility (SCCF) to be used in system control,

The space subsystem is composed of 26 satellites launched into random
equitorial orbits at a near synchronous altitude of approximately 18,200 nautical
miles. At this altitude the satellites, as viewed from the earth, drift from West
to East at about 30° of longitude per day, A varying distribution of satellites
encircling the earth results, since each satellite is released from the dispenser at
a slightly different orbital velocity, The differential velocities are chosen in such
a way as to reduce '"bunching" of satellites, thus enhancing satellite availability.
This type of space subsystem configuration minimizes the effect of any individual
satellite's failure, In addition, since no satellite stationkeeping is necessary, the
potential for an enemy gaining control of the satellite and disrupting communications
is reduced.
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The purpose of the control subsystem is to achieve an orderly allocation of
system assets among various users in accordance with validated user requirements,
The basic elements of the control subsystem are the Satellite Communications Control
Facility (SCCF), the Area Communications Control Function (ACCF), and the Earth
Station Control Function (ESCF). The SCCF is the focal point of the control subsystem
and is collocated with the DCA Operations Center (DCAOC) in Arlington, Virginia,

The primary mission of the SCCF is the preparation and distribution of long term
schedules (60 days prepared every 30 days), short term (up to 30-day duration), and
emergency satellite/link terminal schedules in accordance with validated user

requirements.

To a large extent the circuits provided by the IDCSP appear similar to con-
ventional trunks, Careful engineering of the earth station and DCS station inter-
face make it possible to replace a standard common user trunk with a satellite link
(of equal channel capacity) involving a minimum of special consideration and realign-
ment of equipment on the part of the user or operator. However, certain system
characteristics of the satellite channel can introduce unfamiliar problems. These
are propagation delay, handover, and doppler shift. Propagation delay ranges from
about 200 ms to 260 ms, Experience has shown that this amount of delay is not
bothersome on typical analog voice circuits and has little effect on the quality of
data transmission. The occurrence of outage due to handovers (the transfer from
one satellite to another) are normally predictable in advance; with proper scheduling
and coordination their effects can be minimized. The handover time design objective
is 2 minutes, The maximum doppler shift, 0,21 parts per million, occurs when
the satellite is rising or setting with respeect to a given link terminal. In general,
these shifts are sufficiently small to have no noticeable effects on data transmitted

via IDCSP.

To establish communications between two terminals it is necessary that a
satellite be mutually visible to the terminals. The SCCF is able to provide satellite

scheduling data for all links for a 60-day interval, Satellite availability predictions
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based on probabilistic analyses for various links are shown in Figure 12-2 as a
function of the total number of orbiting satellites, The availability for the Hawaii-
Republic of Viet Nam (RVN) link is shown both for at least one satellite and for at
least two satellites, Two satellites would be required when the channel require-
ments exceed the capability of one satellite, Thus, with a system compqsed of 15
satellites, the availability of at least one satellite for the Hawaii-RVN link is 89 per-
cent and the availability of at least two satellites is 64 percent. Since there is no
orbital control to permit repositioning of the satellites, random gaps occasionally
occur and are a major cause of satellites being unavailable. In addition, satellites
may become temporarily unusable due to conjunctions with other satellites (resulting |
in multipath) or with the sun or moon (resulting in :an increase in system noise
temperature), Since the satellites have no batteries they do not operate during

eclipse (while in the earth's shadow).

Four forms of modulation are used in IDCSP, They are frequency division
multiplex-frequency modulation (FDM~-FM), pseudonoise (PN), differential phase shift
keying (DPSK), multiple frequency shift keying (MFSK)., All link terminals utilize
FDM-FM and PN, The AN/TSC-54 link terminals also utilize DPSK and the AN/MSC-
46 terminals are capable of operating with MFSK, PN modulation yields a degree of

antijam protection to the system,

The FDM haseband consists of nominal 4-kHz channels, or frequency shift
keyed (FSK) teletype channels, or combinations of both, The AN/FSC-9 and AN/
MSC-46 link terminals were modified to accommeodate up to 12 voicé channels,
The link terminzal equipment is also capable of accepting up to five individual TTY
channels at direct current and frequency shift keying them into one of the voice
channels, It is not anticipated that this latter capability will be used for normal
DCS service, It is usually more efficient (a greater number of circuits per VF
channel) to multiplex the TTY channels at the DCS facility. This capability could
be used, however, for direct access from a user to the satellite link terminal if

necessary.
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The baseband configuration of the AN/TSC-54 terminal is compatible with the
baseband of the larger terminals; interoperability in the FDM-FM mode is assured.
The AN/TSC-54 has no voice frequency multiplex equipment but is equipped with
voice frequency telegraph keyers and converters ahd can provide one voice frequency

channel and two out of band TTY,

Certain AN/TSC~54 link terminals are capable of differentially biphase modulating
the carrier with serial hinary data streams of up to 2400 bps with a design objective of
50 kbps. A teletype time division multiplex (TDM) unit accepts up to 16 75-bps

teletype inputs and converts them into a binary stream suitable for DPSK modulation,

Table 12-~4 indicates the capacity experienced, in practice, on particular links
as a function of terminal type on each end of the link, These figures are for duplex
accesses (2-carrier access), the maximum operational satellite loading used in
IDCSP. The satellife frequency plan, optimized to yield minimum intermodulation

interference, is indicated in Table 12-5.
12,3 SPACECRAFT

. The IDCSP satellites are double frequency conversion, hard limiting repeaters
that are placed into near-synchronous equatorial orbit at an altitude of approximately
18,200 nautical miles, At this altitude the satellites drift from west to east {relative
to the earth) at about 30° per day. The satellites are spin stabilized at approximately
150 rpm (by two nitrogen nozzles) to maintain the spin axis within +5° of normal to
the earth's equatorial plane, These satellites are not equipped with batteries and
have a transmitter EIRP of 37 dBm minimum,

The satellites are launched up to eight at a2 time by a Titan IIIC launch vehicle
equipped with a satellite dispenser and using the standard Titan fairing. Each satel-
lite is released from the dispenser with slightly different initial orbit velocity (épproxi—
mately 35 ft/s differential)., This differential initial velocity causes a relatively
random orbital distribution of fhe sé.telliteé, which minimizes-satell‘ite conjunctions.
S1g;namreaare provided by having each satellite in a payload operate at its own
unique telemetry frequency in the neighborhood of 400 MHz.
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Table 12-4. IDCSP Duplex Channel Capacity and Performance (Dual Two Satellite Access)

Link Terminal
Configuration

FDM/FM MODE

DPSK MODE

No, of Global
Quality

Channels

No. of Tactical
Quality

Channels

Data Rate
{bps)

Probability of
Error (Pe}

AN/FSC-9
Ta
AN/FSC-9

AN/FSC-9
To
AN/MSC-46

AN/FSC-9
To
AN/TSC-54*

Improved AN/MSC—46
To
Improved AN/MSC—46

11

AN/MSC-46
To
AN/MSC~46

AN/MSC-46+*
To
AN/TSC-54

AN/TSC-54
To
AN/TSC-54

2400

10

*Power Control is utilized to equalize received C/kT




Table 12-5. IDCSP Access Frequencies

Satellite RF Frequency (MHz)
Access
Channel Downlink (Transmit) Uplink (Receive)
1 7,267.0250 7,986.7450
2 7,271.7125 7,890, 4325
3 7,277.9625 7,966.6825
4 7, 285, 7550 8. 004, 4950
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The repeater, shown in simplified block diagram form in Figure 12-3, is all
solid state except for the TWT transmitter, Amplification and limiting of the signal
take place at intermediate frequencies. The mixing frequencies are derived from a
basic oscillator and multiplier chains, The output of the IF amplifier/limiter is then
summed with the beacon signal, up converted, and fed through the traveling wave
tube amplifier and out to the transmitting antenna. A redundant TWT amplifier can
be switched on in case the first TWT fails, This switch-over is accomplished auto-
matically and can occur only once, There is also included an automatic power shut-

off circuit which activates 6 years after launch.

The transmitting and receiving antennas are separate, They are biconical horns
with 2 toroidal pattern, omnidirectional in azimuth and earth-coverage (28°) in the
other plane, Major communications-related characteristics of the satellites are
summarized in Table 12-6,

12.4 GROUND TERMINALS

The characteristics of the three terminal types used in the IDCSP are shown
in Table 12-7; and block diagrams are shown in Figures 12-4 through 12-8,

12,5 EXPERIMENTS

The primary objective of the Initial Defense Communications Satellite Program
(IDCSP) was to support developments in military satellite communications and provide
a limited operational capability. The experiments and development testing that have
been performed through mid-1971 .are summarized in Table 12 -8,

12,6 OPERATIONAL RESULTS

The IDCSP has become an operational long-haul satellite communications
system., A single satellite is capable of supporting two duplex voice links, each link
carrying five voice channels, but operationally, only one duplex link per satellite is |
allowed to ensure adequate link margins, The system has provided a wideband (450

kbps, 900 kbps under optimum conditions) operational capability for facsimile service
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Table 12-6. IDCSP Satellite Characteristics
Type Dual biconical - toroidal pattern
§ Number Two - RIICP receive, LHCP transmit
€L
< - 0 0
é‘ Beamwidth Earth coverage, 360 x 28
Gain 5 dB in plane normal to the spin axis, o
3 dB minimum in all directions within +14° of the plane
TFrequency Band SHF - 7.3 GITZ transmit, 8.0 GHz receive
Type Hard-limiting, doublc frequency conversion
3 dB BW 26 MH=z
Number One
+. |Type Front End Down conversion mixer
) @
o] 'E Front End Gain No Data
= 13
g & |System Noise Figure 10dB
& T
@ .\
b= Type TW1
g Gain No Data
; Power Out 3 watt
LIRP 37 dBm minimum
|
=4 {Type Spin at approximately 150 rpm
-
§E Capability f_.']o spin axis attitude
E § Primary RO00 n-on-p solar cells provide 40 watts ot lounch
=] :
2 = 2 Supplement None
£
E Comm. Power Necods No Data
o Size 36" diameter by 32" high
g [Weight 102 1b. or less '
=
4]
& Frequency ~ 400 MHz
L.',E' EIRD 18 dBm minimum in all directions within 1450 of a planc
@ 2 normal to the spin axis
=8
8§ | Frequency = 7.3 GHz
(<]
g EIRP 24,5 dBm minimum
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Table 12-7,

Characteristics of IDCSP Ground Terminals

Terminals
Terminal Features AN/FSC-9 AN/MSC-46 AN/TSC-54 AN/SSC-3
Type cassegrain Cassegrain 4 Cassegrain Dish Array Cassegrain
< |Aperture Size 60 ft. Diameter 40 ft. Diameter 15 ft, Diamster Effective | 6 ft Diameter
5 |Receive Gain 58,5 dB* 57.5* 50, 5% 41, 5%
% Efficiency 300 55% 55% 605
< |Receive Beamwidth 0.16° 0.24° 0.52° 1.5°
Type Preamplifier Cooled Parametric Cooled Parametric Uncocled Parametric Temperature Stabilized
o E Amplifier Amplifier Amplifier Parametric Amplifier
5 &
EE Bandwidth 50 MHz (3dBE points) 40 MHz (1 dB points) | 40 MHz (1 dBE points) 40 MHz (3 dB points)
£ | Noise Temperature 200°K (spec. ) 204°K @ 7.5° E1 282°K @ 7.5° El 250°K @ 7.5° El
@7.5° El
= Type Amplifier Klystron Klystroa Klystron Klystron
§ § Bandwidth 50 MHz (3dB points) 10 Hz (1 dB points) 10 MHz (1 dB points) 40 MHz (3 dB points)
7]
;“ &| Amp. Power Qut 10w to 20 kW 100 w to 10 kW 5 KW max. Bw to 5 kW
&an
i Type Autotrack Autctrack Autotrack Autotrack
[+]
g | Accuracy No Data No Data No Data No Data
|"__‘

*Derived value based on data available
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Table 12-7. Characteristics of IDCSP Ground Terminals (contd)

Terminals
Terminal Features AN/FSC-9 AN/MSC-~46 AN/TSC-54 AN/SSC-3
o
& gla/T 34.7 dB/°K 34,0 dB @ 20° E1 25.3 dB/°K 16.4 dB/°K
g g EIRP 101. 2 dBw 98 dBw 87.9dBw 78.7 dBw
=t e
.é a Transmit Feed RHCP RHCP RHCP RHCP
[=3
-éuﬂg Receive Feed LHCP LHCP LHCP LHCP
N
B
% [Radome None Yes None Yes -
'g Type Facility Fixed Terminal Transportable Highly Transportable Shipboard Terminal
K| Terminal Terminal

*Derived value based on data available
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Table 12-8, Summary of Program

Type Experiment

Nature of Results Obtained

5.

Multiple Launch

Voice Transmission

Wideband Data Transmission

Communications to Mobile Terminals

Interference and Jamming

Timing Transfer

Low Elevation Propagation

Electronic Despun Antenna

Successful launch and injection into near synchronous equatorial orbit of
up to 8 satellites from one Titan INIC launch vehicle.

Duplex links earrying up to twelve 4 kHz voice channels ai Defense Communication
System tactical quality.

Simplex links to 1 Mbps using Multiple Freguency Shift Keying for the transmission
of high resolution imagery.

Duplex links using Phase Shift Keying for the transmission of high data rate
digitized voice traffic, providing secure, high quality voice communications.

Duplex data links to ships (AN/SSC-3) and aircraft, {Wright Patterson
Experimental Terminal), 75 bps to 2400 bps, ship to shore and air to ground.

With a pseudonoise spread spectrum modulator /demodulator it was demonstrated
that duplex communications could be maintained with inband uplink interference/
Jjammer power very much larger than the uplink signal power. Operational tests
demonstrated that the Defense Satellite Communication System would be effective
under severe uplink jamming conditions.

Using pseudonoise spread spectrum modulator/democdulators it was demon strated
that timing synchronization could be achieved at satellite earth stations, to
better than one microseccond, on a world wide basis,

Measurements were made of propagation medinm effects on wide bandwidths
(20 MIz), at 7.3 GHz over satellite to ground paths down to zero degrees
elevation, Differential fading results were obtained that could not be explained
in terms of any reasonable two component ray propagation model,

The Despun Antenna Test Satellite (DATS) demonstrated the practicality of an
electronically despun phased array antenna on a spin stabilized satellite to
produce a continuously earth-direction beam. Successful tests were completed
at low data rates (narrow bandwidth tracking loops), showing the effects of
despinning on the communication signals,
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Table 12-8,

Summary of Program Experiments (Contd)

Type Experiment

Nature of Results Obtained

9.

10
Gravity Gradient Stabilization - DODGE( )

{Department of Defense Gravity Experiment)

Successfully detumbled satellite from an initial 0.6 RPM tumble rate.
However, oscillations ir pitch, roll, and yawl varied widely and only once

in 17 satellite passes during 1967 were the oscillations damped to the level
predicted by theory and required for a communication satellite. Also a mumber
of times the satellite has resumed tumbling and has had to be restabilized,
Causes have not been determined for all these tumbling occurrences.




over a two-satellite hop link from RVN to Washington, D, C. In addition, the system
has provided emergency communications when conventional systems have failed. For
example, during the Middle East crisis in May and June 1967, HF radio suffered
frequent outages and the West Germany - Ethiopia link provided a primary tracking
facility. In September 1967 the Hawaii-RVN link carried five of the highest priority
military voice channels for a 10-day period while the commercial Trans Pac sub-
marine cable was broken east of the Philippines. Another submarine cable failure

between Thailand and RVN in October 1967 was temporarily covered by the IDCSP.

Since the first satellite launch in June 1966, the satellites have performed
better than expected. The major cause of failure has been the failure to turn on
again after coming out of eclipse, and in some cases such failed satellites have
turned on after subsequent eclipses. The next most frequent problem has been
failure of the automatic TWT switching system resulting in switched TWTs before
they have actually failed, As of mid-1971 valid TWT switching had been experienced
on three satellites as a result of failures, However, switching had also occurred on

three other satellites for no known reason.

The major failure experienced with the ground terminals was with the mainte~
nance of the cryogenic cooling system in the AN/MSC-46 terminals. These were to
be field-maintainable, but had to be returned to the manufacturer for maintenance.
The problem was subsequently fixed by modification. Another problem area was an
oversensitive tracking system due to its design to track polar orbiting satellites,

A modification narrowing the tracking bandwidth solved this problem. For the
AN/MSC-46 terminals the MTTF experienced was about 75 hours. For AN/TSC-54

terminals it was about 300 hours.
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SECTION 13 - APPLICATIONS TECHNOLOGY SATELLITE

13,1 INTRODUCTION

The history of this wide ranging program can be traced back to late 1962 when
the Natfonal Aeronautics and Space Administration (NASA) initiated design studies for
what was then known as the Advanced Syncom. (1) This was a proposed second gener-
ation synchronous cqmmunications satellite for continuation of the experimentation
started in the highly successful Project Syncom. In 1964, the program concept was
broadened to includé experiments pertinent to meteorology, navigation, and general -
spacecraft technology, The multidimensioned project thus formed was called the
Applications Technology Satellite (ATS) program, By consolidating multiple experi-
ments into a single program, NASA realized significant cost reductions Iand structured
a program that was directly responsive to the responsibilities assigned NASA under

the Space Act of 1958 and the Satellite Act of 1962.

The ATS program, as initially conceived and approved by Congress, was a
multiyear project involving five unique satellites launched into space to conduct some
20 major experiments and a number of related data-gathering studies. Major objec-
tives of the five flights were to: (1) investigate technology common to a number of
space applications; (2) investigate technology for the synchronous orbit; (8) develop
spacecraft stabilization techniques; and (4) develop experiments for several satellite

applications.

The underlying design philosophy, in developing these satellites, was to provide
a large and adaptable volume for mounting the various experiment payloads while
employing basic satellite configurations appropriate for either spin or gravity-
gradient stabilization, Two satellites were designed in the spin stabilized configu-
ration and three were gravity gradient stabilized. Two subconfigurations existed '
for the gravity gradient stabilized satellites. The first of the three satellites
employing this stabilization technique was designed for a medium altttude circular
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orbit where no stationkeeping was necessary. The two subsequent spacecraft were

configured for operation in synchronous equatorial orbits,

Each of the five satellites contained a separate complement of experiments
with a relatively low level of experiment repetition from spacecraft to apacecraft. (2)
The exception to the latter was the C-Band communications experiments, All five

satellites included identical C-Band repeaters for conducting these experiments.

As development and launching of the initial five satellites proceeded, and NASA
began to look towards the future, the main thrust of the ATS program objectives
became more exclusively communications oriented. NASA's ATS research effort is
now directed towards advanced techniques for bringing satellite communications to
an ever-inereasing number of small, perhaps mobile, users having multiple access
to the satellite system; toward broadcast satellite applications, both radio and tele-
vision; toward more efficient techniques of frequency utilization through investigation
of millimeter wavelengths; and toward satellite aids to lunar, planetary, and inter-

planetary communications.

NASA has proposed and has received approval to develop two additional ATS
satellites. These spacecraft will have a higher in-orbit weight and greater available
primary power. They will employ three-axis stabilization to provide greater stabili-
zation acceuracy. Additionally, the spacecraft will feature large (i.e., 30~foot |

diameter) space-erectable antennas producing high antenna directives.
13.2 SPIN STABILIZED SATELLITES

15. 2.1 General Description

The experiments carried on the spin stabilized Applications Technology Satel-
lites can be grouped into seven major categories, These categories are listed and
defined in Table 13-1. (3)(4) Primary objectives of the SHF (C-Band) communicationé;
experiments were to: (1) evaluate a multiple access system having a 1200-channel

capacity in voice, teletype, data, and facsimile modes of operation; (2) evaluate
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wideband transmission techniques;(3) investigate polarization and transmission
phenomena; and (4) provide a communications transmission capability in support of
other applications technology satellite experiments, Major VHF communications
objectives were to demonstrate the feasibility of continuous air-to-ground and ship-
to-ghore voice communications through a satellite, The satellite VHF transponder
also provided the opportur_lity to: (1) evaluate the feasibility of a meteorological
network in which data from small unm#nned stations are collected at a central station
for dissemination to all interested stations within the satellite coverage area; (2)
investigate the feasibility of VHF navigation systems using satellites; and (3) study
the practicality of disseminating time via a VHF satellite.

Figure 13-1, Experiment Categories

Number Description
1 VHF & SHF Radic Commnications and Propagation
2 Meteorological Concepts, Applications and Techniques
3 Navigation and Position Location Techniques
4 Despun Antenna Systems
5 Measurements of .the Earth Environment
6 Technology Applicable to Spacecraft Stabilization and
Stationkeeping _
7 Miscellaneous Aspects of Spacecraft Design

Two active repeater satellites employing spin stabilization, ATS-1 and ATS-3,
(3)(4) ATS-1
(i. €., ATS~B prior to launch) was successfully launched into a geostationary orbit

were launched during the ATS program as indicated in Table 13-2.

and positioned over the Pacific Ocean where it has remained. Its initial program

of communications related experiments, including radio communications, propagation,
and the electronically despun antenna, were all successfully completed and the space-
craft at this writing is being employed for further experimentation. Concurrently,

the remaining scientific experiments were also completed and were successful. (5)
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‘ATS-S (i.e., ATS-C prior to launch) was successfully placed into a geostationary
orbit almost a year after the launching of ATS-1; it was initially positioned over
the Atlantic Ocean. The location was later shifted westward to a position over the
eastern Pacific Ocean at a longitude near the eastern edge of Mexico; it is now
located over South America. The satellite's experiments enjoyed results similar

to those attained with ATS-1 and it also is presently being employed for additional

experimentation.
Table 13-2, Spin Stabilized Spacecraft
Satellite ATS-1 ATS-3
Manufacturer & Sponsor Hughes Aircraft & NASA
Launch Date 12/6/66 - 11/5/67
Launch Vehicle Atlas -~ Agena D
Apogee (mi. ) 22,920 22, 254
"Perigee (ml.) 22, 277 32, 028
Orbital Data- mﬂﬁnnaﬂon , Approximately 0°
Period Approximately 24 hours
Spacecraft active Spacecraft active
Limited Stationkeeping | Solar array output
Status | capability left. Solar degraded, Located
array output degraded. | at about 70° W,
Located at about 149° | longitude
W. longitude '

*At initial injection, Attitude control and station keeping maneuvers produced
changes, ‘

The primary earth terminals involved in the SHF communications experiments
conducted with the spin stabilized Applications Technology Satellites are listed in ‘
Table 13-3. (5) (8) The three NASA terminals indicated also included crossed dipole
arrays for VHF experiments and tracking, telemetry and command (TT&C). A
myriad of additional terminals participated in portions of the VHF testing. These
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included fixed and semi-fixed earth terminals, aircraft terminals, shipborne stations,
ocean buoy data platforms, and various fixed and mobile land-based data platforms
providing information on earth resources., Terminal locations were widely scattered
over portions of the world having visibility of ATS-1 and ATS~-3. Entities, in addition
to NASA, providing VHF terminals included the Environmental Science Services
Administration (ESSA) of the U.S. Department of Commerce, the Federal Aviation
Administration, Office of Naval Research, Aeronautical Radio Incorporated (ARINC),
Hughes Aircraft, various major commercial airlines, and a number of foreign

countries, Satellite launchings were provided by NASA,

Table 13-3. Participating Earth Terminals

Antenna
Location Sponsor Diameter Date
' (ft.) Installed

Rosman, North Carolina NASA 85 1965/66%
Mojave, California NASA 40 1965/66*
Cooby Creek, Australia NASA 40 1965*
Kashima, Japan Radio Research Lahoratories| 98.5 1967*

Ministry of Posts and Tele-

communications, Japan

*Date of ATS-related installation alone,

Specific refinements to the state-of-the-art, contributed by the ATS-1 and 3
test programs, were innumerable, There were four contributions of major impor-
tance in satellite communication; two of these were in the area of despun antenna
technology, ATS-1 demonstrated the feasibility and potential of electronic~despinning
using phased arrays while ATS-3 displayed the feasibility and attractiveness of
mechanically-despun antennas, The SHF multiple access experiments showed the
possibility of the practical implementation of a system emplbying sinple-sideband
frequency division multiplexing on the uplink and phase modulation by the composite
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received signal on the downlink. Additionally, the feasibility of VHF communications

through a synchronous satellite by small mobile earth terminals was demonstrated.

13. 2.2 System Description

The SHF tests with ATS=1 involved all of the terminals listed in Table 13-3,
Loop back, half duplex, full duplex, and three terminal muitiple access .test configu~
rations were all employed. For the ATS-3 tests only Rosman and Mojave terminals
had satellite visibility. Tests were therefore performed on a loop back, half duplex,
and full duplex basis. VHF tests were conducted in all of these configurations from
loop back through full duplex linking, Satellite transponder non-linearity, plus power
and bandwidth limitations, tended to limit multiple access capabilities. The NASA-
furnished terminals provided two functions in the VHF tests. They conducted base-
line evaluations of the satellite VHF transponder and the VHF propagation link to
serve as a reference for testing with mobile and remdte data terminals. The NASA
terminals also participated in the latter tests as central land bases. Typical earth
coverages supplied by the geostationary satellites, ATS-1 and ATS-3, are shown in
Figure 13-1.

Operating frequencies for the spin stabilized Applications Technology Satellites
{2}

are shown in Tables 13-4, 5, and 6, The 6- and 4-GHz frequencles were selected
to be compatible with the international allocations for commercial satellite communi-
cations. The VHF frequencies were selected for a communications experiment
because of compatibility with existing frequencies employed for spacecraft TT&C

and conventional hardware that could readily be supplied for small mobile terminals

(e. g., aircraft terminals),
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Table 13-4. SHF Communications Frequencies (MHz)

Freguency Translation Mode * Multiple Access Mode*
Uplink Downlink Beacon Uplink Downlink Beacon**
6212. 094 4119, 599 4135. 946 6212, 294 4119, 599 4119. 599

621;?694
6301. 050 4178.591 4195, 172 6301, 250 4178.591 4178, 591
630;?650

* Dual frequencies indicated correspond to iwo independent repeaters

** Communications carrier which is always present serves as beacon
in this mode

Table 13-5. VHF (MHz)

Half Duplex Mode Full Duplex Mode
Uplink Downlink | Uplink Downlink
' 149, 195 135. 575
149, 220 135. 600
' 149, 245 135. 625
Table 13-6, TT&C (MHz)
Command Telemetry | Beacon
i 137. 370
148,260 136. 470 -
‘ : 412, 050%

*Third harmonic of 137. 350 MHz

13-8



Basic signal processing techniques employed with the spin stabilized Appli-
cations Technology Satellites, when operated in the SHF multiple access mode,
were as described in Table 13-7, (7) When in this mode (i.e., SSB-FDMA/PM) the
spacecraft {s a signal processing repeater, Single side band (SSB) signals from
individual terminals are frequency division multiplexed on the uplink, The individual
signals are combined in the spacecraft and down~converted to provide a composite
baseband that phase modulates the transmitted carrier. The downlink signal is
detected by a discriminator in the ground terminal receiver and demultiplexed to
derive the desired individual mesgage, In this system, uplink noise becomes a
more significant factor in determining total performance but requirements for
frequency spectrum and uplink power control are reduced. The use of SSB modu-

lation on the uplink tended to restrict the traffic handled to conventional 4-kHz voice,

Table 13-7, SHF Signal Processing for SHF Multiple Access Mode

Mu&ltlpllﬁﬁlo:;%/RF , SSB on uplink and PM on downlink
Ground Demodulator = Threshold estimated at 10-dB C/N based
Performance - upon employing conventional discriminators
Rosman Recelve Carrier- 16.7 dB employing 2 TWTs on ATS-1 and
to-Noise . S a 12-MHz IF bandwidth
Rosman: Receive Margin - 6.7dB

A second SHF communications mode, available on ground cbmma‘nd, configures
the spacecraft repeater as a standard frequency translation transponder; Signal
processing employed for operation in this mode is depicted in Table 13-8. Both
television and multichannel voice traffic were commonly handled with the spacecraft

configured in this manner.
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Table 13-8. Signal Processing for SHF Frequency Translation Mode

Multiple Access

Frequency Division* for a limited number of users.

RF Modulation

FM ™

Ground Demodulator
Performance

Threshold estimated at 10-dB C/N based upon
employing conventional discriminators.

Rosman Recelve
Carrier-to-Noise

14. 4 dB employing 2 TWTs on ATS-1 and a
35-MHz IF bandwidth

Rosman Receive Margin

4.4 dB

L

Time division and code division (i.e., spfread spectrum)

multiple access were employed in special tests.

** Binary phase shift keying and quadraphase shift keying
were employed in time division and spread spectrum
multiple access tests.

For operations involving the VHF satellite repeater, the basic signal processing

techniques employed were as indicated in Table 13-9. (8) A single duplex voice channel

Table 13-9.

was typical of the traffic handled by this frequency translation repeater.

Signal Processing for VHF Repeater

Multiple Access

Frequency division for a limited number of users.

RF Modulation

FM

Ground Demodulator
Performance

Threshold estimated at 10-dB C/N based upon
employing conventional discriminators

Ground Terminal*
Receive Carrier-to-
Noise

20.1 dB with ATS-1 and a 100-kHz IF bandwidth

Ground Terminal *
Receilve Margin

10 dB

*For common type of VHF ATS terminal deployed at the three NASA ATS

terminal sites.
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13.2.3 Spacecraft

Characteristics of the communications related subsystems of ATS-1 and 3 are

(3){4)(9)(10) respectively., With the exception

described in Tables 13-10 and 13-11,
of the high power TWTs on one transponder of ATS-3, the SHF transponders aboard
the two spacecraft were virtually identical. Functional diagrams depicting each of the
three possible modes of the transponder (i.e., frequency translation, multiple access,
and onboard camera) are given in Figures 13~2, 13-3, and 13-4, The VHF trans-
ponder on each spacecraft is illustrated in Figure 13-5. As indicated by the figure,
the VHF transpondér on ATS-3 differed from that on ATS-1 in that a cépability

existed to cross strap the VHF receiver to the transmitter of one of the SHF trans-
pondérs. In this mode of operation, selectable by ground command, the SHF
transponder was operated in the camera mode and the received VHF signal was

down~converted to serve as the input to the SHF transponder's voltage controlled

oscillator.

13.2. 4 Ground Terminals

Two of the three NASA ATS terminals, Rosman and Mojave, are large multi-
functional installations supporting numerous other NASA programs. Characteristics
of the ATS related facilities at all three locations are summarized in Table 13-12,
(See References 5 through 8 and 11.) Major subsystems of the NASA ATS terminals

are depicted in the functional block dlagram of Figure 13-6, )

Equipment and its characteristics are quite similar at all three sites with the
major difference being in the size of the SHF antennas. The linear polarized SHF
feeds employed at all three sites were compatible with the satellite's transmit and
receive polarization, This polarization selection made polarization tracking
necessary. For VHF communications, the T&C antenna was normally configufed
for circular polarization. With the linear polarization employed on the satellite,

this resulted in 3-dB uplink and downlink polarization losses.

13-11



Table 13-10,

ATS=-1

Type SHF xmit. -16 element VHF Comm-8 VHF TT&C-8
electronically despun element electron- | whip turnstile
phased array. ically despun
SHF Rec. -collinear phased array,
array
w
E Number One One One
7]
-
©
< | Beamwidth (3dB) Pencll beam g max- Pencil bgam Essentially omni-
imum of about 21 about 60 wide. directional
wide for xmit.
Gain Xmit-14 dB Kmit-9 dB 0dB
Rec-7.8 dB Rec-8 dB
Frequency Band SHF VHF
Type Triple Mode * supplying: (a) soft limiting |[IF translation
IF translation; (b) modulation conversion hard limiting
for multiple access; (¢) wideband trans-
mission of onbeard data
3 dB BW {a) IF translation-25 MHz; (b} modulation 100 KHz
conversion-5. 45 MHz uplink & 25 MHz
donwlink; (c) Onboard data xmit-25 MHz
Number 2 independent repeaters Cne
g Type Front End | Tunnel diode amplifier into down conver- Down converaion
- sion mixer mixer

-
E’ 'g Fromt End Gain No data No data

A |System Noigse 6.2 dB 4.0 dB

Flgure -

w |Type Two TWTs 8 solid state

§ amplifiers

ﬁ Gain No data No data

E Power out 4 watt per TWT or 8 watt total 5 watt per amplifier

=

or 40 watt total

EIRP 22 dBW with 2 TWTs 23 dBW for 1 carrier

| Type Spin with redundant Ha0o reaction control systems and nitrogen

2 g jets for spinup.

§ e?; E Capability Spin axis attitude errors of about 0. 2° attained

é o |Primary N-on-P solar array with 175 watt output at launch

s g § Supplement 2 nickel cadmium batteries with 6 amp-hr per battery capacity
'E E at launch

g Comm, Power Needs| Each SHF transponder-35 watts, VHF transponder-90 watts, and
O electronically despun antenna-8watts

Size

Cylindrical-57 inches high and 56 inches in _diameter_

Weight

776 1bs initially in orbit

* Mode for each SHF transponder independently selectable by ground command.

. ** Can be operated individually or in parallel.
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Table 13-11, ATS-3
Type SHF-mechanically VHF Comm. -8 VHF TT&C-8
despun cylindrical element elec- whip turnatile
parabolic colllmator tronically despun
illuminated by col phased array
@ linear xmit and recv,
g line feeda. *
g Number One One One
Beamwidth (3 dB) Peglcil beam about Pencil hga.m Epsentially omni-
20" wide about 80 wide directional
Gain Xmit-16 dB KXmit-10 dB 0 dB
Recv-17.5 dB Recv-B dB
Frequency Band SHF VHF

Type

Triple mode ** supplying: (a) soft limiting

IF translation

General Features

IF translation; (b} modulation conversion goft limiting
for multiple access; (c} wideband trans-
mission of onboard data
3 dB-dW (a) IF translation-25 MH2; (b} modulation 100 KHz
conversion-5. 456 MHz uplink and 26 MH=
downlink; (c) Onboard data xmit-256 MHz
Number 2 independent repeaters one
‘Uype Front End | Tunnel diode amplifier into down converaion Down conversion
2ok conversion mixer mixer
E
g E Front End Gain | Mo data No data
System Noise 6.2 dB 2.5 dB
Figure
Type Two TWTs *** 8 solid atate
o amplifiers
% Gain No data No data
Power (ut Xponder 1-4 watt/TWT or 8 watt total 6.3 watt per
Xponder 2-12 watt/TWT or 24 watt totat amplifier or
50 watt total
EIRP Xponder 1-24.5 dBW with 2 TWTs R £25.8 dBW for
Xponder 2-29, 3 dBW with 2 TWTs *™"" 1 carrier
1 Type Spin with Hp0, or hyrazine reaction control systems and
= nitrogen jets for apinup. )
Pt
§ 8| capability Spin axls attitude errors of about 0.2° attained
" °l Primary N-on-P solar array with 175 watt output at launch
3 ﬁ‘ Supplement 2 nickel cadmium batteries with 6 amp/hr per battery
4 g capacity at launch

Comm, Power Needs

SHF Xponder 1-35 watts, SHF Xponder 2-50¢ watt, VHF
Xponder-100 watts, and mechanically despun antenna-

156 watt
Size Cylindrical ~ 71 inches high and 58 inches in dlameter
Welght 806 lbs initially in orbit.

+  Fail safe mode can be initiated by blowing parabolic reflector off antenna
to get pancake pattern and about 7 dB gain.

#+  Mode for each SHF transponder independently selectable by ground command.
Can be operated individually or in parallel.

* bk
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Table 13-12,

NASA ATS

Terminal Feature

Termingl

Rosman (811T)

Mojave (S1F}

Cnohy Creck (811T)

All 3 Terminale (VHF)

Type Cnsacprain Caassegrain Caaaegrain Croag Dipole Arruym)
P Aperture Size 85 ft. Diameter 40 [t. Diamoter 40 ft. Dinmeter About 15 ft x 15 ft
& | Recelve Gain Gh. 4 413 41 d13 51,5 dD 22 B
2
< | Efficiency 50, 8%, 51% " AN
. O % . a1y, . [ . R
Receive Beamwidth .2 34D Pts, | .4 @3 dB Tts .4 [ 3 03 12ta. 11
Type Preamptificr Coolad Parametrie } Cooled Parnmetrie | Cooled Parametric | No data
.2,: g Amplifier Amplificer Amplifier
U
3 Z | mandwidth 30 MHz 70 MHz 40 MIlz 11 M *
[%4]
Nolse Temperature | 757k @ 7.5 EL 757Kk @ 7.5 EL 78% @ 7.5" Kl 1230k

Traansmit
System

Type Amplifier
Bandwidth
Amp. Power (ut

Klystron
25 MHz

1 KW in S5B modes
& 2 KW in FT
mode ***

Klystron
20 MHz

1 KW in 8813 made
& 2 KW in FT
mc)d(‘. e

Klystron
25 MIl»
1 KW in 88B mode

&2 KWin I'T
mode **

No data
No datn
2.5 KW

Type Monopulse auto- Monopulse anto- Monopulse auto- Monontlse auto-
g track on X-Y mount | track on X-Y mount | track on Az-El track © on X-v
mount maount
] o o 0 a
o Accuracy +0.03" in winds up | 10,047 in winds up | 10,04 in winds up 0.5
to 2¢ mph to 20 mph to 20 mph
a'ég G/T 39,6 JD 32,2 dB 32.7 dB .9 dB
HE
gr_‘{jg EIRP 122.1 dBM © 116.5 diam 116 dBM * 76 dBM
é E Transmit Feed Linear Linear Linear Cireular or Uncar **
E § Recelve Feed Linear Linear Linear Circolor or lnear
= Radome None None None Kome
=]
g 2| Type Facility Fixed Terminal Fixed Terminal ‘Tranaportable e Fixed except af |

Cooby Creeck

*  Derived value based on dutu available.

SSB and T'M power amplifiers use same model klystron which is capable of up to 10-KW average output.

¥H

eI E

Fhva

Manual positioning used at Cooby Creck.

N n-rotatable in the linear configuration.
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13 air-transportable vana in addition to SHE and T&C antenna existed at Cooby Creck.

Separate Yagi transmit and receive antennas of sami: type integrally mounted »n same base,

Selectable bandwidths of 10 KHz, 30 KHz, 100 KHz, 300 KHz, 1 Mitz, anid 3 MIiz arc available,
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13.2.5 Experiments

Experiments conducted as part of the spin stabilized ATS program are listed
in Table 13-13. (3)(4)(5) The table shows the seven major experiment categories,
listed in Table 13-1, into which the individual experiments can be grouped. In the
case of the satellite VHT transponder experiments, some overlap between categories
existed, These transponders supported selected meteorology and navigation experi-

ments in addition to the communications and propagation experiments,

Specifically, in the WEFAX experiment, the satellite VHF transponder relayed
Environmental Science Services Administration (ESSA) weather data (including ATS -
SSCC photographs) in facsimile format from Suitland, Maryland to Automatic Picture

Transmission (APT) stations in the U. 8., Japan, and Australia, (12)

Ag part of
OPLE, the spacecraft VHF repeater relayed interrogations and responses between
the OPLE Control Center (OCC) and small remote platforms which were sometimes
in motion, Responses included data from local sensors and OMEGA navigation
system VLF tones received at the remote platforms and up converted to VHF, (13)
Various other navigation and postion location experiments employed the spacecraft

VHF transponder for ranging measurements.,

The meteorological experiments, defined in Table 13-13, produced a vast
number of high quality pictures from the spacecraft camera systems and demonstrated
the feasibility of weather facsimile through the satellite's VHF repeater. The space-
craft stabilization experiments have displayed that nutation sensing and damping,
for nutation angles between 0. 001° and 5. 0°, can be satisfactorily accomplished
and that hydrazine thrusters are feasible; the resistojet stabilization experiment
was not as successful, The entire ammonia fuel load was depleted on ATS-1
{(probably by a leak at a pressure transducer port) and particle contamination
resulted in abnormal valve operation and thrusting performance on ATS-3, ©)

Considerable data was obtained on the navigation and satellite technology experiments

with the result that all major objectives have for the most part been met. Additionally,
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61-81

Table 13-13. Summary of ATS 1 and 3 Experiments

Experiment Spacecraft Category of Activity
1. Microwave Communications 1&3 Communications and propagation evaluation
2, VHF Communications 1&3 Communications and propagation evaluation
3. Phased Array Antenna 1 Comparison despun antenna techmology
4, Mechanically Despun. Antenna 3 Comparison despun antenna technology
5. Spin Scan Cloud Cover (SSCC) Camera 1&3 Meteorology concept consideration
6. WEFAX 1&3 Meteorology concept consideration
7. Image Dissector Camera System 3 Meteorology concept consideration
8. Nutation Sensor 1&3 Spacecraft stabilization investigation
9. Resisto-jet 1&3 Spacecraft stabilization investigation
10, Hydrazine Rocket System 3 Spacecraft stabilization investigation
11, Omega Position Location Experiment (OPLE) 3 Navigation techniques study
12, Self-Contained Navigation System 3 Navigation techniques study
13. Reflectometer 3 Satellite technology evaluation
14, Apogee Motor Plume 3 Satellite technology evaluation
15. Supra thermal Ion Detector 1 Earth environment measurements
16. Magnetometer 1 Earth environment measurements
17, Omnidirectional Electron<Proton Detector 1 Earth environment measurements
18, Multielement Particle Telescope 1 Earth environment measurements
19. Sblar Cell Radiation Damage 1 Earth environment measurements
20, Thermal Coatings 1 Earth environment measurements
21. Electron Magnetic Deflection Spectrometer 1 Earth environment measurements




the environmental measurements experiments have been providing valuable informa-

tion that is adding to the pool of knowledge on the space environment in the vicinity of
the earth,

The phased array antenna, employed on ATS-1, consisted of 16 antennas
arranged around a circle of one wavelength radius with each antenna composed of
four collinear dipoles, Phasing of the radiated output was accomplished using
eight ferrite phase shifters. Each phase shifter provided two equal amplitude out-
puts whose phase was varied in an opposite sense by inputs from the Phased Antenna
Control Electronic.é, PACE, The two phase shifter outputs were connected to two
diametrically opposite antennas., The PACE derived phase shifter control signals
from satellite spin rate inputs and orbital position, This antenna system realized a
measured in-orbit gain of about 12. 5 dB with a beamwidth of approximately 22°
due to the array. Beamwidth due to the stack of dipoles was determined, prior to
launch, to be about 17°. The PACE system demonstrated reliable performance and
accurate pointing of the radiated beam., The total drive power requirement of the

phase shifters was about 2 watts, .

The mechanically despun antenna, employed on ATS-3, consisted of a rotating
cylindrical parabolic collimator illuminated by a two element collinear array feéd.
Each array element was a full wave dipole. The pﬁrabolic collimator was rotated in
opposition to the direction of spacecraft spin by a 128-step synchronous stepping
motor and encoder controlled by the Mechanical Antenna Control Electronics, MACE,
The MACE system was essentially identical to the PACE system émployed on ATS-1,
The measured in-orbit gain of this antenna was about 17 dB with a beamwidth of
approximately 20°. The PACE system displayed a capability of pointing the antenna
beam towards the earth within about +0. 7 degrees. Antenna system reliability was,
in general, quite good. During the satellite's first year in orbit, several malfunctions
of the despinning mechanism were observed due to stalling of the stepping motor,

No thermal effects could be related to this anomaly. It was hypothesized thata

failure of the electric damper circuit associated with the stepping motor Regulator
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No. 2 was responsible for the abnormal bebavior. A switchover to backup electronies

eliminated these malfunctions.

Prime objectives of the microwave communications experiments were defined
in Paragraph 13,2.1, The final objective, providing support to other onboard experi-
ments, was readily accomplished through numerous transmissions of wideband data
from other satellite experiments, The spacecraft television cameras were the chief

beneficiaries of this mode of operation,

Multiple access experiments of primary interest and their basic results are
described in Table 13-14. (T)(14) Additionally, measurements of system noise power
ratio and multiplex channel linearity, envelope delay, harmonic distortion, and
frequency response were carried out with satisfactory results. The experiments
indicated that CCIR and CCITT standards on communications transmission
can be met with this type of system. Frequency control and a high level of inherent
frequency stability are necessary to eliminate mutual interference on the uplink and
to allow accurate demodulation to baseband of the SSB signal containing no reference
carrier. Automatic level control is necessary to assure a proper balance of modu-
lation indexes for all signals accessing the satellite's PM transmitter. Adequate
short term frequency stability was found to be the most difficult requirement to meet
but numerous special tests at NASA ground terminals indicated that much can be done
to reduce instabilities. As expected, the higher receive antenna gain and EIRP of

the ATS~-3 satellite afforded greater performance capabilities than experienced with
ATS-1. '

Experiments employing the spacecrafts’ wideband freque;xcy tranglation
repeater measured frequency division multiplex and television system performance,
The frequency division multiplex tests were conducted employing a simulated loading
of up to 1200 one-way voice channels at Rosman and up to 240 one-way channels at
Mojave and Cooby Creek. Measurements of RF signal power and propagation
losses; baseband frequency response and envelope delay; system noise power ratio;

and multiplex channel frequency stability, level stability, S/N ratio, data error
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Table 13-14,

SSB-FDMA/PM

Type Experiment

Nature of Results Obtained

1.

RF Power Level and Propagation
Losses

Good correlation with predicted uplink
and downlink values

2.

Baseband Freguency Response

5/C degrades performance little if any.
Flat from 300 Hz to 6 MHz,

Frequency Stability

Long term'saability no problem when
closed loop = AFC from pilot tone
relayed thru satellites is employed.
Short term stability found to be a
problem, ** Contributers to problem in
order of significance were: incidental
modulation at power line frequencies,
oscillator 1/f phase noise, 1.6 Hz phase
modulation due to 8/C spin *** and
oscillator thermal noise. The latter two
were of little consequence.

Level Stability

Employing an Automatic Level Control
system ***" | with a 0.1 dB/S response
time, long term level variations were no
problem. Short term fluctuations at

1.6 Hz due to 5/C spin were not corrected
by level control loop but 0.5 dB peak-tc-
peak variations were no problem.

5.

Voice Channel 5/N

Rosman tests using 1200~channel spectrum
with 600 channel noise loading demonstrated
a 40 dB capability with ATS-1 at maximum
power, With companders giving a 15 dB
improvement,a 55 dB S/N would be obtained,

Data Error Rate

At 1,2 Kbps using non:therent FSK an
error rate of 6.3 x 10 ° bit/bit was obtained
for channel S/N ratio between 30 and 40 dB.
At low data rates (i,e,, 50, 100, and 300
bps) it was shown that excessive frequency
jitter can effect error rates.

*  Open loop correction could not be employed since S/C oseillator frequency
offsets were sufficient to cause pilot frequencies to fall in multiplex signal

spectrum.

*+  AFC loop cannot correct these errors due to the 0. 27 second lag caused by
the propagation delay of the synchronous satellite

Caused by antenna phase center being off 8/C spin axis

*#*+  Bame pilot tone as employed for AFC loop is used.
t Caused by the narrow bandwidths employed at low data ratee
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‘rate, linearity, envelope delay, harmonic distortion and frequency response were
taken, (/14

EIA recommendation TR~141 and found to be, in general, compatible with the high

Performance was compared with standards given by the CCIR and

quality expected for long haul telephony. With 1200-channel loading, compandors
would be required to meet S/N ratio requirements. Frequency instabilities were,
in this case, almost entirely due to differential doppler but were not significant.
An AFC loop was not required.

For the television tests, major system design characteristics were as indicated

(7)(14) Monochrome TV test terminals were installed at all three

in Table 13~15.
ATS earth stations and color test facilities were available at Rosman, Experiments
conducted and their basic results are described in Table 13-16. In addition to these
tests, numerous demonstrations have been conducted and events of interest televised.
Included were the "Our World" demonastration in June 1967, the address by Japanese
Prime Minister Sato during his Australian visit in October 1967, and coverage of the

Olympics in Mexico City in 1968,

Investigations of transmisidn phenomena included measurements of spacecraft
spin modulation, transmit and receive antenna pattefns, and repeater saturation
characteristics plus ground terminal G/T, antenna pointing accuracy, and transmit
and receive antenna patterns. Results were in general agreement with previous
independent measurements and theoretical expectations. Investigations of polari-
zation phenomena included evaluations of SHF Faraday rotation as projected from
VHF measurements and the effect of satellite antenna beam position on observed
polarization at the ground. The latter determined that the ATS~1 polari-zation angles
(polang) changes about 0, 11° per degree change in satellite beam position while the
ATS-3 polang is constant to appro:cimé,tely +4° from peak of beam.

Additionally, numerous special tests were performed by NASA ground terminal
engineers and the Japanese and Australian governments, The Japanese tests

employed the Kashima ground terminal and repeated many of the SSB-FDMA/PM
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Table 13-15, TV System Design Characteristics

Parameter

Value

1. RF Carrier Deviations

a. By video signal
b. By audio subcarrier

2. Audio &ch‘arrier Frequencies| 6.0 MHz (4.5 or 7.5 MHz optional)
8. Subcarrier Deviation by Audio| + 200 KHz peak

4, Video Section Bandwidth
5. Audio Section Bandwidth

+10 MHz peak

.+ 1 MHz peak for 6 MHz subcarrier, + 0.715
MHz peak for 4.5 MHz subcarrier, or + 1.3
MHz peak for 7.5 MHz subcarrier.

30 Hz to 4.5 MHz (3.5 MHz optional)
30 Hz to 13 KHz

Table 13-16, Frequency Translation TV System Experiments

Type Experiment

Nature of . Results Obtained

2.

4.

5.

Continuous Random Noise
Periodic Noise (Power
supply hum)

Crosstalk

Linear Waveform Distortion

Non-Linear Waveform
Distortion

Insertion Gain Variations

51 dB peak-to-peak signal to weighted rms noige
measured at Rosman with peak power on ATS-3.
CCIR standards require 56 dB for 99% of time.

8/N of 43 dB with all significant components below
1 KHz obtained to exceed CCIR recommendations
by 8 dB.

An initial andio~to-video problem cansed by coupling
in a common baseband equipment power supply was
eliminated to reduce crosstalk level tc 76 dB down
or more,

Frequency response, short time wave form distortion
line-time and field-time waveform distortion, and
envelope delay evaluated. CCIR recommendations
for international TV circuit met and those for system
M {Canada and USA) partially met.

Differential gain and color vector error (equivalent of
differential phase) evaluated. CCIR recommendations
for international TV circuit met but those for system
M were not met.

Found to be negligible,
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and frequency translation mode tests performed by the NASA ATS terminals, Major
differences were a greater emphasis on digital traffic handling capabilities and an
investigation of the feasibility of time division multiple access employing frequency
translation repeaters, The latter culminated in the demonstration of practical 4-
phase and 2-phase systems operating at 13 Mbps and 27 Mbps, respectively. (15)
Australian experimenis employing the NASA Cooby Creek ground terminal, evaluated
(16)

digital transmission over satellite voice circuits, telephone signaling systems

(17)

compatible with satellites, and computer-to-computer communications at bit

(18)

rates up to 2, 4 kbps, The feasibility of operational systems was demonstrated

in all cases.

Major chjectives of experiments performed using the VHF repeaters of the
two satellites were defined in Paragraph 13, 2,1, However, prior to conducting the
indicated investigations, a series of ground-to-satellite-to-ground tests were
conducted employlng the VHF facilities of the NASA ATS earth terminals to provide

baseline data. These tests and their primary results are described in Table 13~17, (19)

Aircraft to ground communications through the satellite has been successfully
demonstrated on a number of occasions by commercial air flights over both the

(5)20) A number of airlines in the United States plus such

Atlantic and Pacific,
forelgn carriers as Qantas, Japan Airlines, and BOAC have participated in these
tests. Briefly, the aircraft terminals have consisted of a frequency modulation
transceiver capable of radiating up to 500 W, data acquisition equipment, and

specially designed circularly polarized antenna installations,

Ground-satellite-aircraft tests have demonstrated the feasibility of realizing
a high operational reliability in such links. Multipath fading, scintillation, and air-
craft antenna anomalies (i.e., variations in gain as function of aspect angle to satel-
lite and polarization ellipticity) have been primary causes of signal fading. High |
solar and magnetic field activity affected propagation but did not present unmanage-
able problems, Precipitation static discharges raised normal 1100°K antenna

temperatures to 70, 000°K., To achieve acceptable communications during these
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Table 13-17.

NASA Baseline VHF Tests

Type Test Nature of Results Obtained
1. Receive Signal Level Good correlation with theory. Diurnal trend
indicated showing peak signal level reached in
evening hours following sunset. Daily variation
is as much as 6 dB.

2. Carrier to Noise Versus Downlink limited region or maximum C/N
Uplink EIRP reached at a ground transmitted EIRP of about

40 dBW. Maximum measured C/N on ATS-1
was 17 dB and on ATS-3 was 20 dB.

3. Signal to Noise, Carrier Predicted and measured S/N and C/N displayed
to Noise & Data Error good agreement. Data error rate at 1.2 Kbps
Rate showed that local RFI was a predominant factor,

4, Satellite Transponder On ATS-1, 2 equal accessing carriers could
Passband Frequency differ in transmitted power by as much as 9 dB
Response due to gain variations across passband pius

compressign, On ATS-3, maximum difference
was 4 dB.

5. Satellite Transg‘o*pder On ATS-1, 6 dB of small carrier compression
Compression displayed for 10 dB small carrier to large carriear

Input ratio. No significant compression measured
on ATS-3.

6. Carrier Intermodulation = | ATS-1 closely followed theoretical hard limiter

' performance. Sum of 3rd and 5th harmonies on
ATS-1 was 8 dB down. On ATS-3 the sum was
17 dB down.
7. Interference Effects Various levels and frequency separations for

AM and FM interference evaluated as a function

of measured voice channel articulation index (AI)
of desired signal, Results inconclusive due

to difficulties in interpreting mechanized measure-
ments of Al,

* Improvement over ATS-1 primarily due to lack of compression in
near linear transponder,

** Two input carriers employed.

*** FM employed on desired signal.
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disturbances, antenna noise temperatures must be limited to a maximum value of
7000°K, Aireraft receiving from the satellite experienced interference when operating
within line-of-sight of aircraft or ground stations transmitting co-channel in the con-

ventional environment,

Aircraft-satellite-ground links have, generally, displayed a lower reliability
than the links in the opposite direction. A major cause has been insufficient radiated
power from the aircraft and uplink interference caused by conventional VHF communi-
cations systems within the satellite's area of earth coverage. The factors producing
variations in link performance are, in general, the same as for the ground-satellite-
aircraft link. It has been recommended that an operational system employ circularly
polarized satellite antennas and linearly polarized aircraft antennas to minimize

antenna caused performance variations.

Maritime radio communications via geostationary satellite has been demon-
strated to be feasible in a number of ship-to-shore and ship-to-ship communications
tests. (5) Participating ships have included the Coast Guard cutters Glacier and

(1) and the German ships Gauss and Meteor,

Klamath, the S.S. Santa Lucia,
Successful experiments have been conducted with ships operating in the Pacific,
the Arctic, the Antarctic and the Atlantic Oceans, Indications were that S/N ratios
of about 40 dB could conveniently be attained on a voice channel and data error
rates on the order of 10_3 and 10“4 bits/bit realized at 600 bps transmission rates.

Short term fade depths in the order of 12 dB were observed in some tests.

Data dissemination in a meteorological network was displayed in the WEFAX

experiment, Data collection from small unmanned stations was demonstrated as

(22) (23)

part of OPLE, Additionally, special hydrological and ocean buoy experiments
have shown successfully that satellites can be employed for remote station interrogation
and data transfer. Signal fading was observed to be a significatit factor to be con-

gidered in designing operational systems,
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VHF ranging experiments have displayed the feasibility of employing satellites
operating at these frequencies for navigational purposes, Tests indicated that
position fixing accuracies within +1 n,mi, were attainable, (24) The satellite's
VHF transponder has also been used in time dissemination experiments conducted
by ESSA and the National Bureau of Standards. Accuracies of better than 10 micro-

-
seconds have been demonstrated, (25)

The VHF transponders on ATS-1 and 3 have, additionally, been employed in
various special tests and demonstrations. These include communications support

for selected Apollo landings and tests of: aircraft to aircraft communications when

(26)
(27)

the two aircraft are operating near opposite poles of the earth, chirp modulation

as a means of overcoming multipath effects and doppler shifts, educational and
public radio transmissions in Alaska, and VHF propagation phenomena. The latter
include measurements of multipath, scintillation, and Faraday rotation effects.

Each satellite's telemetry beacon and the Third Harmonic Generator (i, e., third
harmonic of telemetry beacon) on ATS~3 have also been employed for such measure-

ments. These measurements, in addition to supplying direct propagation information,

have been useful in studies to determine the temporal makeup of the earth's ionosphere.

13. 2. 6 Operational Results

Since ATS-1 and 3 were experimental satellites, no operational traffic was
carried, The operational performance of the NASA ATS ground terminals was
good. In general, it was also shown that operational mobile VHF terminals were
feasible, However, in specific cases of hastily assembled experimental VHF
facilities, operational difficulties including insufficient transmitter power, antenna

anomalies, and poor equipment reliability were encountered.

The operational performance of the two spin stabilized satellites was basically
quite good. Specific minor difficulties encountered on ATS-1 included a gradual
decay of radiated power when both SHF transponders and all four TWTs were

energized and occasional SSCC picture streaking. The former was determined
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to be a temperature problem and operation with three TWTs was found to be sustain-
able, The latter occurred during periods when the spacecraft load exceeded solar
array output to the extent that the batteries were depleted resulting in an abnormally

low battery voltage.

Operational difficulties on ATS-3 included the failure of one 12-wa"ct TWT to
operate, a spurious SHF emission at 4201 MHz when operating in the FT mode,
spacecraft response to commands intended for ATS-1, and a malfunction of the
mechanically despun antenna (MDA). The spurious SHF emission was conjectured
to be due to thermal effects, occuring during eclipse, creating an electrical or
mechanical/electrical path to allow sustained passage of suffictent electrical energy
to activate the VCO employed in the S8B-FDMA/PM mode. Responses to ATS~1
commands were determined to be due to the address assignments made and not due
to equipment abnormalities, As a result, the address assignments for ATS-4 and 5
were changed, The despun antenna malfunction was verified to be produced by

stalling of the MDA motor as discussed in Paragraph 13,2.5.
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13.3 GRAVITY GRADIENT STABILIZED SATELLITES

13.3.1 General Description

The experiments carried on the Application Technology Satellites that featured
evaluations of gravity gradient stabilization can be grouped into six major categories,

These categories are listed and defined in Table 13—18.(28)’ (29), (30)

The objectives
of the SHF C-Band experiments were the same as indicated in the ''General Descrip-
tion' of the spin stabilized ATS (see Section 13.2,1)., The objectiv'es of the L-Band
experiments were to demonstrate the feasibility of air-to-ground communications at
these frequencies and to investigate propagation effects. The objective of the milli-

meter wave experiment was fo investigate propagation at 15 and 32 GHz.

Three active repeater satellites (i.e,, ATS-2, ATS-4, and ATS-5) were launched
during the ATS program for the express major purpose of evaluating gravity gradient

stahilization. The status of these spacecraft is reviewed in Table 13-18.

Table 13-18, Experiment Categories

Number Description
1 Gravity Gradient Stabilization at Medium and Synchronous Altitude
2 C-Band, L-Band, and Millimeter Wave Radio Communications and

Propagation

3 Meteorological Experiments
4 Measurements of the Earth Environment
5 Technology Applicable to Spacecraft Stabilization and Stationkeeping
6 Miscellaneous Spacecraft Technology

ATS~-2 (i.e., ATS-A prior to launch) failed to reach its intended 6000 nautical
mile circular orbit when the second stage of the launch vehicle failed to restart leaving
the spacecraft in a highly elliptical orbit having a relatively low perigee. This pre-

cluded proper testing of the gravity gradient control system although the stabilization

booms were successfully deployed, Limited data was obtained on most of the

13-30



remaining spacecraft experiments including data on the C-Band communications,

meteorological, and environment measurements experiment,

Table 13-19. Gravity Gradient Spacecraft

decayed 9/2/69
resulting in
spacecraft
destruction

satellite ATS-2 ATS-4 ATS-5
Manufacturer & Sponsor Hughes Aircraft & NASA
Launch Date 4/5/67 8/10/68 8/12/6%
Launch Vehicle Atlas-Agena D Atlags-Centaur
Apogee (mi.) 6947 480 22,277
Orhital Perigee (mi. ) 115 135 22,196
Data* .
Inclination 28.4° 29° 2,6°
Period (min, ) 218.9 94,5 1436
Satellite was Orbit decayed Satellite apin-
shut down 10/17/68 result- ning around
10/23/67. ing in satellite longitudinal
STATUS Orbit degtruction axis but in syn-

chronous orbit
located at about
105°W, longi-
tude.

*At initial injection, Altitude control and station-keeping maneuvers produced

changes,

ATS-4 (i,e,, ATS-D prior to launch) fell short of its intended synchronous orbit

when the Centaur failed to re-ignite for a second burn leaving the spacecraft in a low

altitude parking orbit with the Centaur still attached, Shortly after second burn failure,
the ATS-4-Centaur conglomerate went into a tumble about a traverse axis,

maneuvers by the spacecraft attitude control systems were unable to completely correct

this condition. As a result the gravity gradient system could not be tested and little

information was obtained on the other satellite experiments although all subaystems

appeared to be operating properly. Among the operations accomplished was a partial

deployment of the stabilizing booms, boom scissoring and successful firing of the ion

engines,
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Table 13-20.

Millimeter Wave and L-Band Terminals

Ls.s. Manhattan** *¥**

Antenna Frequency Band
Diameter
Location Sponsor {FT)
Bedford, Massachusetts” Air Force Cambridge Research Labs 28 Millimeter Wave
Cambridge, Massachusetts® Department of Transportation 10 Millimeter Wave
(2 Dishes)
: : * . - .
Ottawa, Canada Prime Site Canadian Communications Research 30 Millimeter Wave
sk Center
Secondary Site 8
Rome, New York" Rome Air Development Centor 15 Millimeter Wave
Holmdel, New Jersey™ Bell Telephone Laboratories 20 Millimeter Wave
Lakehurst, New Jersey* U.5. Army Sateliite Communications 30 Millimeter Wave
Agency
Greenbelt, Receive Site NASA, Goddard Space Flight Center 15 Millimeter Wave
Maryland Transmit Site . 10
Waldorf, Maryland® Naval Research Labs 60 Millimeter Wave
R .k
Columbus, Ohio*** Fixed Site Ohio S5tate University 30 Millimeter Wave
Mobile Site™ 15
Rosman, North Carolina** *** NASA, Goddard 15 Millimeter Wave
Boulder, Colorado ESSA Wave Propagation Lab 10 Millimeter Wave
Boulder, Colorado* Westinghouse Georesearch 12 Millimeter Wave
orlando, Flerida* Martin Marietta Corp. 12 Millimeter Wave
San Diego, California* **¥* Naval Electronics Laboratory 60 Millimeter Wave
Center
Austin, Texas® *** University of Texas 10 Millimeter Wave
2 Dishes])
Rosman, North Carolina** NASA, Goddard i5 1, Band
Mojave, California™* NASA, Goddard 15 L Band
NASA, Goddard 3 L Band

*Receiver only

**Transmit/Receive installation

¥*kpctive participants in NASA/GSFC Millimeter Wave Bxperiment,

Remaining Millimeter Wave stations are independent experimenters

*kd*pyperimental icebreaking oil tanker
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ATS-5 (i.e., ATS-E prior to launch) was successfully placed into the planned syn~
chronous orbit but was left spinning about the spacecraft's longitudinal axis, Spin
stabilization about this axis was the planned method of satellite control during the
transfer orbit, apogee motor firing, and maneuvers to position the spacecraft on
station, However, greater than expected nutation during this phase produced loss of
spacecraft control and ultimately resulted in the present spin about the proper axis
but in a direction opposite (i.e., counterclockwise) to that needed for the planned
operation of the two-stage yo-yo despin mechanism. Consequently, a scheduled
investigation of gravity gradient stabilization was again left unaccomplished. Modi-
fications to earth terminal equipment, however, have allowed many of the remaining
experiments aboard this satellite to be partially successful, In particular, objectives
have been partially attained with regard to the millimeter wave, L-Band, and environ-

mental measurements experiments,

The primary earth terminals involved in the few C-Band communications opera-
tions conducted included the terminals employed for the testing on ATS-1 and ATS-3
(see Table 13-3) with the addition of the terminal at Ahmedabad, India. The latter
became operational in 1967 and conducted tests and demonstrations with ATS-2, The
major terminals participating in the L-Band and millimeter wave tests on ATS-5 are
defined in Table 3-20, (31, 32, 33) All of these terminals became operational in 1969
and 1970, Tracking, telemetry, and command (TT&C) was provided by separate
installations included in the NASA ATS facilities located respectively at Rosman,
North Carolina; Cooby Creek, Australia; and Mojave, California, In addition, some
telemetry and tracking was provided by terminals at Johannesburg, South Africa;
Tananarive, Madagascar; and Kauai, Hawaii. Satellite launchings were provided by

NASA,

The launch difficulties on ATS-2 and 4 precluded any significant contributions to
gatellite communications by the experiments on board these spacecraft, However,
ATS-5 did make several contributions, first, its millimeter wave experiment has

provided valuable data that will contribute towards opening this band for satellite
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communications; secondly, its L-Band experiment has given a preliminary indication
of the potential that these frequencies hold for aircraft and maritime control, com-
munications, and navigation; and third, this satellite displayed the potential difficul-
ties involved in injecting a gravity gradient stabilized satellite into a synchronous

orhit and deploying it to a desired station.

13.3.2 System Description

The SHF (i.e. C~Band) tests conducted were done primarily on a loop back or
half duplex basis. The system configuration for the millimeter wave tests was as
shown in Figure 13-7. The figure indicates, uplink propagation measurements were
performed in the satellite and telemetered to the ground. Downlink measurements
are performed on the ground. A system block diagram of the initially planned L-Band
communications test configuration is shown in Figure 13-8. Signals are sent from
the ground stations to the satellite at C-Band. These signals are combined in the
satellite and retransmitted to the aircraft at L-Band. The ground stations monitor
the L-Band transmissions from the satellite for frequency control and ground-to-
satellite range measurements. Aircraft transmissions arrive at the satellite at
L-Band where they are combined and transferred to C-Band for transmission to the
ground stations, An L-Band ground station transmit capability is also provided to
allow full testing of the satellite from the ground. The earth coverage supplied by

ATS~5 for the millimeter wave and L-band tests is shown in Figure 13-9,

SHF, C-Band, operating frequencies on the gravity gradient stabilized space-

craft were the same as on ATS 1 & 3 (see Table 13-4).

The same is true of the TT&C frequencies (see Table 13-6). The millimeter
wave and L-Band operating frequencies are shown in Table 13-21. (31, 32) The indi-
cated millimeter wave frequencies are of interest in that they are located at the first
two windows in the frequency spectrum above 10 GHz where water vapor and oxygen |
absorption are low. Millimeter wave propagation, in general, is of interest in that
it offers a possible means of reducing overcrowding in the lower bands. Additionally,

it offers extremely wideband capabilities, high gain-small aperture antenna
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characteristics, and reduced size and weight of components, The L-Band frequencies
are of interest for aircraft control, navigation, and communications, The VHF fre-
quencies are also commonly considered for this purpose since they are compatible
with existing equipment, L-Band offers the potential of more accurate satellite

ranging and wider bandwidths for multiple access communications and control,

Table 13-21, Millimeter Wave and L-Band Frequencies (GHz)

Millimeter Wave L-Band
Uplink Downlink Uplink Downlink
31.65 15.3 1. 65 1.55

The basic signal processing techniques employed for C-Band tests were the
same as used in ATS-1 and ATS-3 tests (see Tables 13-7 and 13-8), The millimeter
wave experiment provided two complete and independent propagation measurement
links. Similar signal processing techniques were employed on each link, It basi-
cally consisted of modulating a carrier with a single tone such that a carrier and
first order upper and lower sidebands all of equal level are produced. This was
accomplished by a varactor phase modulator in the satellite and a varactor frequency
upconverter, which was capable of AM, FM, or PM modulation, in the ground trans-
mitter, For the uplink, sidebands could be set at + 1.0, + 10, or + 50 MHz from the
31.65 GHz carrier. For the downlink, settings of + 0,1, +1.0, + 10 or + 50 MHz
(34)

from the 15,3 GHz carrier were possible Receivers employed down conversion
mixing, filtering, envelope detectors, and phase detectors to derive measurements
of carrier, upper sideband, and lower sideband amplitude plus relative sideband

phase,

The L-Band signal processing employed was dependent upon the modes selected

for satellite operation, Four modes were commonly employed as follows:

13~38



Narrowband L-L (FM/FM)

Spacecraft receives at L-Band and retransmits at L-Band {frequency

translation).
Cross Strap L-C & C-L
a. L=C Cross-strap (SSB/FM)

Spacecraft receives at L-Band (S8B), translates to video (300 to 600 kHz)
and uses the video signal to modulate (FM) the spacecraft C~-Band VCO;
the output of which is then translated to C-Band and retransmitted,

h. C-L Cross-strap (FM/FM)

Spacecraft receives at C-Band, frequency translates to L-Band, and

retransmits (Frequency translation).
L-L (SSB/FM)

Spacecraft receives at L-Band (SSB) translates to video (500 to 600 kHz) and
uses the video signal to modulate (FM) the Spacecraft L-Band VCO; the out-
put of which is then translated to L-Band for transmission to the earth

station.
Wideband Data Mode (FM downlink only)

Video signals from onboard-spacecraft equipment modulates (FM) the satel-
lite L~-Band VCO the output of which is upconverted to L-Band for transmis-
sion to earth. A fifth possible mode was identical to narrowband L-L

(FM/FM) except a wide bandwidth was supplied,

Link performance for modes involving the C-Band downlink and a high
uplink S/N was essentially as defined in Tables 13-7 and 13-8, Typical
link performance for modes involving the L-Band downlink and a high uplink
S/N was as described in Table 13-22 for a narrowband L-L FM/FM link,

The frequency translation modes were not designed primarily for multiple
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access, The planned multiple access modes of operation employed the L~L

SSB/IF'M and the L-C SSB/FM satellite transponder configurations,

Table 13~22, Signal Processing for L-L Satellite Channel

Multiple Access FDMA for limited number of accesses
RF Modulation FM

Ground Demodulator Threshold estimated at 6 dB C/N based
Performance upon employing FMFB receivers
Rosman Receive 9 dB employing 2 TWTs, 2.2 MHz
Carrier-to-Noise IF bandwidth, and 1 satellite access
Rosman Receive Margin 3dB

13.3.3 Spacecraft

Characteristics of the communications-related subsystems of ATS-2 and ATS-4

are described in Table 13-23.(10’ 28, 29)

Block diagrams of the three possible
modes of the SHF transponders were shown in Figures 13-2, 3 and 4. The Table
displays some of the major system design differences in synchronous-altitude and
medium-~altitude gravity gradient stabilized communications satellites. These include,
for the latter, low antenna gains for earth coverage beams; no need for an onboard
apogee motor and spin stabilization prior to positioning "on station;'" and no need for
stationkeeping during gravity gradient stabilization "on station,"

Characteristics of most of the communications-related subsystems on ATS-5

(10, 30, 32, 34)

are shown in Table 13-24, A functional diagram depicting the L~Band

transponder, and its various selectable modes, is given in Figure 13-10. (32) With
the exception of the antenna system, the characteristics of the onboard millimeter

wave equipment are not described in the Table since this equipment does not include
a millimeter wave communications transponder. s primary purpese was simply to

make propagation measurements,

13-40



Table 13-23. ATS-2 and 4 Characteristics

satellite ATSE-2 ATS=-N
Type SHF-Horns used| TT&C-8 SHF-Planar PT&C-
for both xzmit whip array used for|Essentially
“ and recelve turnstile {both xmlt and |the sama
g recelve as for
& | Number COne One ___One ATS=-2
& [ Beamwidth (3 dB) 05" pencil Ezsen- 23 pencill
= beam xmit and tlally beam xmlt and
<1,
' receive omnidirec-flrecelve
tlonal
Gain 10.5 dB xmit 0 dB 16.5 dB xmlt
and recelve and recelve
Freguency Band SAF (C-Band) ST {C-Band}
Type Essentlally the same Essentlally the aame
3 dB BW as for the repeaters as for the ropeaters
Number on ATS=1 (Hoee Talile on ATS-1 {(See MTablc
@ ' Type Front End 13-10) 14="111)
51, 5 [Front End Galn
= %%ﬁﬁ System Nolse
o [ 1= | Flgure
g + | Galn
éiE Power Out
EIRDP 18 dBW with 2 TWT's 24 dBW with 2 TWT's
Type Gravity gradient wlth no )y 8 T PR
- e S () Spin initially® with
g statlonkeeping capabllity nitropen jets for spln-
ol up and hydras ine gos
= Jet reactlon control,
N Gravity pradient "on
—~ statlon”" with micro-
o thruster statlon-
L Keopingr**
W 4+
5 & Capabllity No data due to launch No data due to launch
I fallure fatllurc
P Primary N-on-P solar array wlth
Fea W 140 watts at launch Isaentially the same
I B ? [Supplement Two nickel cidmiom batter- as for AT3-2
© oz 3 jen wilh 6 amp=hr. /baltery
& loo
v ot capacliy ol launch
5 Comm. Power Needs Each SHF transponder - 3%
< watts and gravity gradlent
— 35 watts
Size Cyllndrical - 72 inches
high and 56 1nches in
diameter
Welght 815 1b tnitially In orbit fH0M Lbh initially in
orblt

fluringe the Lransfer arblt and untll thoe spacceraft 1o

orn ntation

#Eouh L iminge solld jetn aloo availalble for
stabtlizalion ocour:s

salellite

180° Crom dosired abtdGuade
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Table 13-24,

ATS-b Characteristics

Applications Technology Satellites

*%* Modes are independsntly selectable by ground command

L]
LR L]

Soft limiter

Wideband IF translation

Modulation conversion for multiple access {1.e., 3SB=-FDMA/FM)
t! Can be operated inividuslly or inm parallel

\iA}

Subliming sol

occurs at 180

from desired attitude
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Type L Band - 12 Helix Millimeter Wave - SHF (C Band} - TTAC =
plapnar array used Conlcal horna uaed Essentlally the Essentially
for both xmit and for both xmit and same as for the same as
recelve recelve ATS-4 (See Table | for ATS-2
v Numb er One Qne 13-23) (See Table
£ | Beamwidth {3 dB) 24° pencil beam 20% pencil beam 13-23)
Y for xmit xmit and recelve
£ [Gain Tmit. - 17 aB Imit. - 19 dB
< Rec. - 15 dB Rec. = 19 dB
| Frequency Band L-Band¥ SHF _(C Band)
Type Multiple mode*¥* supplying: ({(a) narrowband IF trans-
lation®#® (b)) wideband IF translation®®*% (c) modula- Essentlally the
tilon g¢onverslon for multiple access (d) wldeband same as for cne
tra*smission of cnbeard data {e) C-L band®#s# gng of the repeat-
L-C! band cross-strap ers on ATS-1
3 dB BW ta) narrowband translation-2.5 MHz (D) wideband trans- (See Table 13-2)
o lation-25 MHz (¢) modulatlion conversicn-100 KHz uplink
9 and 25 MHz downlink (d) omboard dsta xmit-25 MHz (e)
I croas strap-25 MHz for C-L and 160 XHz uplink into
g 25 MHz downlink for L«C
a Number Une
= j4 Type Front End Tunnel diede amplifier intc down conversion mlixer
b Front End dain No data
g’b System Nolae Figure | 4.5 4B
LB Type Two THT 8TT
g+ [ Galn N¢ date .
@ & [Power Out 12 watt per TWI or 20 watt total
= B
EIRF 25.9 GBW with 2 TWI's 24 dBW with 2 TWT=
2 Type Spin 1nitlsllytt with nitrogen jets for spinup and hydrazine gas jet
a5 reaction centrel. Gravlty gradient "on station” with miercthruater
E ﬁ}}' stationkeeping.
S b1 S Capabllity Excessive nutation with apogee motor attacned during epin stabllized phase.
o No_gravity gradient data obtained.
= 5 ? Primary F=on-F solar array with 175 watts at lsunch.
z 3
E 23 { Supplement 2 nickel cadmlum batteries with & amp. hr/battery capacity at launch.
& | Comm. Power Needs C band xponder-35 watt, L band xponder-30 watt, gravity gradient-35 watt,
& and millimeter wave experiment - 30 watt
Size Cylindrical - 72 inches high and b0 inches in diameter
Welght 954 ibs, InTt¥ally Tn orbit
Notes: % Transponder 13 an adapticn of one of { band

transponders sppearing on previous

During the tranafer orbit and until the spacecralt 1s positicned on statien

Ed Jets also avallable for satellite inveraion if stabilization



A separate unrelated millimeter wave receiver and transmitting system were
provided to aid in evaluating propagation at two different frequencies, The trans-
mitting system included a primary and secondary transmitter operating at the same
frequency. Additionally, a capability existed to receive and detect a TV signal to be
used to modulate the L-Band satellite transmitter. (39) However, the spinning condi-

tion of ATS-5 precluded transmissions of TV signals,

The spacecraft millimeter wave receiver utilized a balanced mixer front end
with a 17 dB maximum noise figure working into a 1. 05 GHz solid state IF amplifier
having a 47.5 dB gain.(34) Maximum received signal level was -85 dBm and mini- .
mum sensitivity was -120 dBm, The receiver phase locked on the carrier with the
aid of a track-and-search circuit providing a + 5 kHz minimum pull in range over a
+320 kHz band, The solid state primary millimeter wave transmitter supplied 250 mW
(unmodulated) and 70 mW per line (modulated) of downlink power. The secondary -

transmitter was identical but could not be modulated by a tone,

b-lb.&'l?ﬂl'hl “onH x4 H ml_‘b

X1 X24

102 fo
RCVE SIG: BPF
lﬁLOJ& XMIT 51G:
1550.0 MiHs
F ¥
£~ AMP
MIX 1
fo = 6b, | MM
W = 1.5 Mk
FROM 550
C-1AND ........-’m S = 100 ke TR VCO
RPTR
10 C-BAND
RPTR
XA
[ 1.4
W » 25 MHz MIN W = 25 MHy MIN

ANTENMA

Figure 13-10. ATS-5 L-Band Repeater Block Diagram
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(28)

In addition to the communications related subsystems, ATS-2 provided
a) two 1-inch 800-line advanced vidicon cameras, one narrow-angle and one wide-
angle, and a tape recorder as a meteorological experiment; b) two 525~line TV
cameras measuring boom thermal-bending characteristics plus a power control
unit, solar aspect sensor, and two IR earth sensors to support the gravity gradient
experiment; ¢) an environmental measurements package including omnidirectional
proton-electron counters, electron magnetic deflection spectrometer, multi-element
particle telescope, VLF whistler mode detector, cosmic radio noise receiver, solar
cell radiation damage array, thermal coating samples, and electric field experiment;

and d) a DOD albedo experiment.
(29)

In addition to the communications-related subsystems, ATS-4 provided :

a) hydrazine gas jets plus passive and active nutation control systems for spacecraft
stabilization and stationkeeping during the period of spin stabilization; b) a two-
stage yo-yo despin mechanism; c¢) resisto jet and cesium ion microthrusters for
stationkeeping during gravity gradient stabilization; d) a TV camera monitoring
booms plus solar aspect and IR earth sensors to support the gravity gradient
experiment; e) an image orthicon day-night camera as a meteorological experiment;
and f) a magnetometer sensor measuring spacecraft charge as an environmental

measgsurements experiment,

)

In addition to the communications-related subsystems, ATS-5 provided (30 :
a) essentially the same equipment as listed in items a) through d) for ATS-4; b) an
environmental measurements package including a tridirectional particle detector
measuring protons with energies between 30 and 250 keV and electrons between 30
and 300 keV, a unidirectional particle experiment to study auroral particle fluxes,
a bidirectional particle experiment to map electrons and protons on constant lines of
force and determine properties of acceleration within the magnetosphere, an
omnidirectional particle experiment measuring electrons in 12 discrete energy

ranges and the flux of solar cosmic rays, a radiometer measuring solar radio
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bursts between 50 kHz and 4 MHz, and an electric field measurements experiment;
and c) other experiments in spacecraft technology including a2 magnetic damper, a

solar cell voltage monitor, heat pipes for solar panel thermal equalization, a third
harmonic generator similar to that on ATS-3, a solar cell damage experiment and

a magnetometer experiment,

13.3.4 Ground Terminals

Major NASA terminals supporting SHF, C-Band, operations were the same as
employed on ATS-1 and 3. These terminals were described in Table 13-2. Terminalg
participating in millimeter wave and L-Band experiments were defined in Table
13-20. The millimeter wave installation at NASA's Rosman, North Carolina facility
and the L-band installation at Mojave, California are typical of the earth terminals
employed for these two respective groups of experiments, Major characteristics
of typical millimeter wave and L-Band terminals are described in Table 13-25. ©2),

@4) Terminal block diagrams are provided in Figures 13-12(31) and 13-13, 82)

The millimeter wave terminal block diagram displays the interest that existed
in finding meteorological measurement techniques which could be useful in predicting
propagation losses at these frequencies. The L-Band terminal was configured such
as to allow operation in the satellite 1.~ to C~-Band cross strapping mode. The linear
polarization employed at the millimeter wave terminal and the circularly-polarized
feeds of the L-Band terminal were compatible with the spacecraft polarizations

making link losses due to this source small.

13.3.5 Experiments

Experiments that were planned for ATS-2, 4, and 5 are summarized in

(28), (29), (30) - :

Table 13-26. The Table also indicates the six major experiment
categories, listed in Table 13-18, into which the individual experiments can be

grouped.,

Some data was obtained on most of the experiments enboard ATS-2. The

data, generally, was of limited value, however, since a launch vehicle failure left
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Table 13-25.

Characteristics of Millimeter Wave and L-Band Ground Terminals

Table 18-256. Characteristics of Millimeter Wave and L-Band Ground Terminals

Terminal Feature

Terminal

Rosman (Millimeter
Wave}

Mojave (L Band}

Type
Aperture Slze

Caszsepralin
15 ft. Diameter

Casseprain
15 ft. Dlameter

Antenna Receive Gain 54dR 3h.5H dB
Ffficiency h5g%* EoEH
Recelve Deamwidth 321 9 3 ap pes. 3280 ¢ 3 gp pus.
. Type Preamplifier Tunnel Dicde Uncooled Parametric
Receive Amplifier
System Bandwidth 600 MHzZ** @ 3 dB Tis, No Data###
Noise Temperature 10Q0°K 340°K
Type Amplifier TWT Klystrom
Transmit ne o dE Ve .
System Bandwidth 150 Mz 3 dl PPLs. 7 MHz @ 3 dB Fts.
Amp. Power Out LEW*E®® 1XKW
Type Conical Scan Autotrack Slaved to d40ft. C Band
% Program-Autotrack Antenna Autotrack
Tracking
Accuracy No Data No Data
Totazl Per- G/T 22 dB/°K 9.2 dB/°K
formance | prpp 116 dBM 93.6 dBEM
Polari- Transmit Feed Linear Circular
zatlon Receive Feed Linear Circular
Perminal Feature Rosman (Milllmeter Mojave {L Band)
Wave)
Tnstal- Rademe None None
laticn Type Facility Transportable Transportable
NQTE : *  perived Value Based on Data Avallable
##4 RF Bandwidth
#%% o5 MHz Regulred to Recelve Wideband Data from Satelllte
HEnw

Normally Operated at 10 to 100 Watts
Transmltter Is Linear tc About 200 Watts for Use in Multiple Access

Made

Conical Scan Could Not be Used Due to the Spin Condition of ATS-5
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Table 13-26. Summary of ATS-2, 4 and 5 Experiments

Space-
Experliment craft Category of Activity

1. Microwave (C-band) Communications 2, 4 & 5| Communications and propagation evaluation
2. Millimeter Wave Propagation 5 " n " n
3. L Band Communications 5 " " " "
4. Gravity Gradient Stabilization 2, 4 & 5| Gravity gradient stabilization investigation
5. Advanced Vidicon Camera 2 Meteorology concept consideration
6. Image Orthicon Camera System 4 " " n
7. Subliming Solid Engine 2, 4 & 5| Study stablilization & stationkeeping technology
8. Resistojet 4 & 5 " " " " "
9. Ion Engine h &5 " " " " v
10. Albedo 2 Miscellaneous spacecraft technology consideration
11. Magnetic Damper 5 " " " "
12, Voltage Monitor 5 " " " "
13. Heat Pipe 5 " " " "
14. Solar Cell Damage 5 " " " "
15. Third Harmonic Generator 5 " " " "
16. Magnetometer ' h &5 " " " "
17. Omidirectional High-Energy Earth environment measurements

Particle Detector 2 &5
18. Cosmic Radio Noise Receiver 2 &5 " " "
19. Electric Field Measurements 2 &5 " " "
20. Electron Magnetic Deflection

Spectrometer 2 " " "
21. Multi-element Particle Telescope 2 " " "
22. VLF Whistler Mode Detector , 2 " " "
23. Solar Cell Radiation Damage Array 2 " " "
24, Thermal Coating Samples 2 " " "
25. Tridirectional Medium Energy

Particle Detector N ' o " " "
26. Bidirectional Low Energy Particle

_Detector

27. Unidirectional Low Energy

Particle Detector

L2 BV 4 B o

" " "

" L] i}




the spacecraft tumbling in a highly elliptical orbit. The stabilization booms were
successfully deployed but the tumbling nature of the satellite resulted in the loss of
one boom and in another being broken. Operation of the C-Band transponders was
demonstrated including transmissions by the earth terminal at Ahmedabad, India.
ATS—4 produced even less in the way of successful results than ATS-2, - Among the
accomplishments were partial deployment and scissoring of the stabilization booms

plus successful firing of the ion engines.

Some of the experiments on board ATS-5 were also lost when the spacecraft
was left spinning rather than gravity gradient stabilized. In particular, it was not
possible to obtain data from the gravity gradient, resistojet, ion engine, solar cell
voltage monitor, heat pipe solar panel temperature equalization, cosmic radio noise,
or from the electric field measurements experiments. If the booms could be deployed
the latter two could be successfully completed. Noteworthy successes have been
obtained from the earth environment measurements, L-Band and millimeter wave
experiments. The latter two were obtained through ground terminal modifications
to accommodate the periodic nature of the received signal, caused by the spacecraft

spin.

For the millimeter wave experiment, the spacecraft spin rate (i.e., 76 rpm)
resulted in a received signal pulse having a 26 ms time duration between 1 dB down

points, that occurred every 789 ms,(se)

Ground complex modifications to accommodate
this type of received signal included exclusive employment of program tracking rather
than autotracking, installing a manual override to prevent the receiver phase lock

loop from going into a search mode during deep fades of the peak signal, tripling

the data sampling rate to 108 samples-per-second (1. e., one every 9.2 ms) and
selecting the maximum valued sample‘ as the only valid data point during any given
second, Detrimental effects of the spacecraft spin have included loss of the milli-
meter wave to L-band TV transmission capability, a loss of fade measurement range
which in itself was not of major significance, a serious degradation of the differential

sideband phase measurement capability due to spin-induced doppler effect and
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settling time of the quadrature phase detectors, and loss of the ability to detect short
term signal fades oceuring at rates greater than about 0.5 Hz. The detrimental
effects of spacecraft spin plus a 9 dB drop in primary transmitter outputs, occurring
about 3 months after satellite launch, also made it impossible to obtain coherence

bandwidth measurements at 15.3 GHz.

Data was obtained on the statistics of long term fades, correlation between
various attenuation prediction techniques and actual measured attenuation, effects
of site diversity at 15. 3 GHz, and coherent bandwidth at 31. 65 GHz. Preliminary

31), (34), (36
results are tabulated in Table 13-27.( h (34), (36)

Table 13-27. Preliminary Results Millimeter Wave Experiment

Type Experiment Nature of Results Obtained

1) Attenuation at 15.3 GHz 1 to 3 dB in light rains or dense fog,
3 to 7 dB in continuous rains (5 to
50 mm/hr) and number of fades
exceeding 12 dB in heavy thunder-

storms.
2) Evaluation attenuation ~Excellent results using radiometer
prediction techniques measurements* of sky temperature,

Fair results employing radar back-
scatter readings at millimeter wave
frequency. Better results at lower
frequencies. Poor results using rain
gage measurements of rainfall rate.
Results improved with more gages
over greater area.

3) Effects site diversity Durations of 6 to 10 dB fades reduced
at 15.3 GHz by approximately two orders of
: magnitude using simple diversity
system with 4 km ground separation
between terminals,

4) Coherent bandwidth at ' Measured relative amplitude variations
31. 65 GHz of sidebands have been within +2 dB of
carrier for sidebands at +1. +10, and
+50 MHz.

*Operating at same frequency as propagation link.
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For the L-Band experiment, the spacecraft spin produced about a 22 ms sample
time during which the received signal was within 1 dB of peak, The impact of the
spinning spacecraft upon the original experiment objectives was that: a) all satellite
loop tests had to be performed using a sampling technique that was synchronized to
the spacecraft spin rate; b) the earth station AGC time constant had to be small
compared to variations in the received signal to allow maximization of the sample
time; c) fading at rates greater than about one half the sampling rate, but not as
great as those that could be observed in one sampling interval, were impossible to
record; and d) FDM two-way voice or multiple access voice demonstrations could
not be completed. The tests were completed and their results are summarized in
Table 13-28. 32) The results indicated that accurate navigation and high quality

communications are feagible at L-Band. However, more data may be required to

allow refined system designs.

13. 3. 6 Operational Results

ATS-2, 4, and 5 were experimental satellites, therefore, no operational traffic
was carried. Operation of C-Band, L-Band and millimeter wave terminals was
quite satisfactory. Spacecraft operation, in the case of ATS-4, was very limited and
all equipment appeared to be performing well. On ATS-2 and 5, however, operations

were more extensive and some anomalies were encountered.

The anomalies on ATS-2 included a missing and a broken stabilization boom,
unplanned environmental measurements package turnoffs, inadvertent gravity gradient
regulator turnoffs, and an inability to retract gravity gradient booms. The missing
and broken booms were the result of the whipping action produced by spacecraft
tumbling. The equipment turnoffs were determined to be due to low battery voltage
caused by poor spacecraft aspect angle relative to the sun, No significant problems
resulted from the turnoffs, The inability to retract booms was theorized to be due
to boom motion preventing a smooth entrance into the rollers of the retraction

mechanism.

13~52



£6-¢€1

Table 13-28. L-Band Experiments

Type Experiment

Nature of Results Obtailned

1)

2)

3)

)
5)

6)

7)
8}
9)

Spacecraft Antenna
Patterns
I, Band Propagation

Spacecraft Oscillator
Frequency 0Offset

Spacecraft Intermodula-
tion Distortion (SSB/FM)
Spacecraft Transponder
Compression (FM/FM)

Spacecraft SSB/FM Modu-
lator Linearity

Spacecraft Frequency
Response

Doppler Due to Spacecraft
Spin

Multiplex Channel S/N
(SSB/FM)

10) Spin Modulation Com-

pensation Test

Half-power beamwldth 24° for transmit and 28° for receive

Diurnal wvariations due to lonosphere were less than 0.3 dB based
on four 24 hour test segquences. Observed short term fading and
gseintillation effects were less than 0.3 dB on both uplink and
downlink

Spacecraft VCO offset from nominal decreased from about -245 KHz at
turn on to about -~180 KHz 200 minutes later. Spacecraft master
oscillator caused offset in earth station baseband signal of about
i KHz at turn on and stabilized to about 500 Hz 15 hours later

At normal power output levels intermodulation products are approxl-
mately 26 dB below either of two test tones

The initial polnt where a 2 4B 1ncrease 1in 1input power causes only
a l dB increase in satellite output occurs at an earth station
transmit power of 39.6 dBm

Response of the S3B/FM L-band modulator to a tone received at
several RF levels was linear up to a modulation index of 12 radians
rms

In narrow band FM/FM, a 2 MHz 3 dB BW measured.
half power BW was 115 KHz

At 20 dB down points on spacecraft antenna pattern,varies from

+12 Hz at a maximum to -46 Hz minimum

Signal to thermal noise ratio was measured to be 36 dB* at earth
statlon transmitter power output of 50 dBm. S/N decreased linearly
with decrease in SS3SB transmitter power

By modulating uplink power 1n synchronism with spacecraft spin and
such as to compensate for variations in satellite recelve antenna
pattern, usable uplink window was lncreased from 52 ms to 100 ms

In SSB/FM mode,

* At Mojave terminal.




The only significant operational difficulties encountered on ATS~5 have involved

(39), (36) The main transmitter

the primary and backup millimeter wave transmitters.
functioned perfectly during the first 3 months in orbit., On November 22, 1969,
however, the output power was down 6 dB at turn-on. This condition continued until
December 17 when a further 3 dB loss was recorded. Transmitter power has
remalined stable at this level to the present writing, The dec input power has shown
no change from pre-launch level during this entire time. Further the 30.6 GHz
local oscillator power has shown no significant change. This indicates that the loss
is oceurring in the solid state multiplier chain above the L-Band portion where the

receiver local oscillator power is coupled out, The exact location and cause of the

failure has not been determined.

The backup millimeter wave transmitter showed normal power characteristics
from launch until October 22, 1969. The transmitter output power was then observed
to decrease over time periods as short as 2-1/2 hours and as long as 9 hours to a
level between 3 and 4 dB below normal output at which time the output abruptly
dropped to zero. A period of nonoperation has always restored the transmitter to
normal output. A loss in dc input power that correlates with the loss of RF output
power has been recorded. It has been evident that the thermal sensitivity of the

transmitter is responsible for the power loss.

13«54



13,4 LARGE APERTURE ANTENNA SPACECRAFT (ATS-F and G)

13,4,1 General Description

NASA's Applications Technology Satellites (ATS) F and G are for demonstrating
the use of a synchronous orbit spacecraft as a relay station for several communications
experiments. They will provide accurate three-axis attitude control usiﬁg inertia
wheels and/or gas jets as control actuators, The communications subsystems of
these spacecraft include a parabolic reflector antenna of 30-foot diameter, a composite
multifrequency antenna feed assembly, a multiple frequency transponder, and two
separate major propagation experiments, A primary objective of these spacecraft is
the demonstration of the 30-foot space deployable antenna, This antenna, in conjunc-
tion with'the remainder of the communication system, provides a highly effective
radiated power making possible the utilization of small inexpensive receiving terminals
for such uses as relay links with spacecraft, ships, aircraft, and low-cost ground
stations, Experiments employing terminals of this type have been designed for use
with the ATS-F spacecraft and are described in a later section, Because no experi-
ments have been approved for ATS-G as of mid-1971, the following discussion considers
only the ATS-F program,

13.4,2 The ATS-F Spacecraft

The composite feed assembly shown in Figure 13-13 is used in conjunction with
the reflector to provide efficient antenna performance over a broad range of frequencies.
and a wide variety of beam shapes, sizes, and functions, Although individual feed
elements are used for each frequency band to permit optimum performance, a great
deal of commonality exists among the radiating elements, To satisfy polarization,
weight, and size requirements, cavity-backed cross-dipole elements are used for S, L,
and UHF feeds, These elements offer simple and reliable radiators capable of operat-
ing at the frequencies, bandwlidths, and polarizations defined by the experiments, Wifh
the exception of VHF radiators, the feed layout enables placement of all radiating
elements in the parabola's focal plane, and minimizes interaction between neighboring

feeds,
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Signal interfaces for the multiple frequency transponder are illustrated in
Figure 13-14.(37) Its configuration is shown in the communication subsystem block
diagram of Figure 13-15.(37) The transponder consists of the receiver assembly, IF
amplifier assembly, synthesizors, and transmitters, Its characteristics are
summarized in Tables 13-29, 30, 31, 32, and 33(.37) The receiver assembly design
follows proven technology with appropriate redundancies to increase reliability, More
interesting is the IF amplifier assembly, consisting of an IF input switch matrix,
three identical 150-MHz IF amplifiers, and an IF output switch matrix, To achieve
high reliability with maximum flexibility, IF switching is provided to interconnect the
various circuits, The input switch matrix allows any down-converter to be connected
to any IF amplifier, As many as three IF channels can be accommeodated simultaneously,

The output switch matrix allows any IF amplifier to be connected to any up-converter,

Further, the wideband data unit can be connected to any up-converter,

The IF amplifier is a cascade type with high gain wide -bandwidth stages so that
the frequency response is determined by the bandpass filter. The nominal bandwidth
of the filter is 40 MHz and this fizes the maximum bandwidth of the amplifier, The

signal can be further filtered, on command, to a 12-MHz bandwidth,

Within the output processor, the signal can be amplitude limited before reaching
the output, or the signal can be detected in a single sideband detector, The baseband
output from the detector is used to phase-modulate an internally generated carrier,
This converts the multiple-carrier freqﬁency division multiplex (FDM) information at

the input to phase-modulated information at the output,

The AGC loop has three basic modes of operation that optimize performance for
the particular experiments, For the wideband experiment, a predetection AGC loop
is used that detects the total received signal (signal plus noise) and varies the gain to
keep the output power constant, For the PLACE experiment post detection, AGC is
used with a 1-MHz bandwidth, The output signal from the IF amplifier is fed to the

frequency synthesizer,
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Table 13-29,

Communications Subsystem Characteristics

HECEIVER TRANSMITTER
NOMINAL ANTENNA PEAX MING T G/T TRANSMITTER | MIN. ERP ERF
MODE USER FREQUENCY [ BANDWIDTH § POLARIZATION | FiELD OF VIEW] ANTENNA | OVER ¥Ov | (PEAX) | ouTrUT POWER |OVER FOV {PEAK)
{MH2z) {MHz) {DEGREES) |GAIN (dB) (€] 3] (4PK) {WATTS) (dBW) {4BW)
30-FOOT C-BAND RECEIVE | LASER 4350 0 LINEAR 0.4 5.0 0.3 134
MW 5150 12
MONOPULSE 5950
30-FOOT U-BAND
TRANSMET LASER 3780 40 LINEAR 0. @0 - - 1.0 51.541) [sas ()
MMW 940 47.2¢2) |s0.1 (1)
ANTEMNA TEST 4140
HORN C-BAND RECEIVE TEADRE ITV 6350 0 LINEAR 0 16.% -30 a7 - “
PLACE MMW &350 [T
LASER ATS-R 5950
HORN C-BAND TRANSMIT | TADRE BEACON
PLACE 930 L]
MMW LASER 17350 LINEAR >20 54 - - 1.0 15.0(1) |jaso(n
AADIOMETER 4150 W 237
RFl 50 500 LINEAR >10 6.7 0.0
3-FOOT C-BAND RECEIVE | RFI &150 soo HORIZONTAL o4 LK NA NA NA NA NA
VYERTICAL
RCP
30-FOOT S-BAND RECEWVE T
SCAN TADRE 1250 L] rCP (S RN} 0.8 - - - -
30-FOOT S-BAND e
TRANSMIT ON AXIS T&ORE 1 ROC 12 "CP .3 - - 0.0 20.3
W-FOOT S-BAND
TRANSMIT SCAN TADRE 1800 1’ RCP 13.2(0) oo - - 04q “"
MFOOT 5-BAND RECEIVE
ON AXIS T&DRE 2150 12 RCP - “w.3 - (X} -
]
30-FOOT L-BAMD PENCIL
BEAM RECEIVE TLACE 1450 ¥} RCr 1.5 s s 5.4 - - -
30-FOOT L-DAND PENCIL
BEAM TRANSMIT PLACE 1530 12 RCP (K} 384 - 40.0 a0 1]
30-FOOT L-DAND FAN
BEAM RECEIVE PLACE 1650 ” nce 1x13 n.s 5.0 -2 - - -
30-FOOT L-BAMD FAN
BEAM TRANSMIT PLACE 1450 1 nce 1275 33 - - 40.0 42.0 as
20-FOOT UNF TRANSMIT [ITV 50 “ nce 30 3.0 - - 0.0 0.0 51
36 FOOT VHF RECEIVE MONOPMILSE 130 . LINEAR 1 [k} 20 -1 - -
30-FOOT VHF RECEIVE COMMAND 148,16 03 LINEAR s L] .20 e - -
154.2
3B-FOOT VHF TRANSMIT TELEMETRY 134.21 2 LINEAR b 1] 17 10 17 30
EME 137.11

11) SINGLE CARMER QPERATION

(2) DUAL CARRIER OPERATION

(1) THISIS A t1.] DEGREE PLANE INCLUDING THE Z AX15




Table 13-30, C-Band Performance

RECEIVE

Transponder Input to Preamp Losses

Sum Channel
Diplexer
TDA Switch

Error Channel
Modulator
Filter

Preamplifiers

Noise Figure
Gain

Preanip to 1F Losses

Coupler
Sum Channel
Error Channel
T'riplexer
Downconverter
IF Switch

IF Noisc Figure

Overall Receiver Noise Figure *

Sum Channel and Horn
Error Chanpel

TRANSMIT

TWTA Output Power (20 W)
Switch Loss

Coupler & Waveguide Loss
Diplexer Loss
Transponder Output Power

0.3dB
0.2dB

1.0dB
0.3 dB

8.5 dB
15.0 dB

1.2dB
7.0 dB
1.0dB
8.0 dB
0.5 dB

5.0 dB

7.13 dB
9.5 dB

+43 dBm
0.25 dB
0.1dB
0.2dB

+42.45 dBm

*Includes input to preamp losses.
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Table 13-31, S-Band Performance

RECEIVE

Trangponder Input te Preamp 1osses

Sum Channel
Filter
Preamp Switch
Error Channel
Modulator
Filter

Preamplifiers

Noise Figure
Gain

Preamp to [F Losses

Coupler
Sum Channel
Error Channel
Downconverter
IF Switch

IF Noise Flgure

Overall Receiver Noise Figure *

Sum Channel & Cross Array
Error Channel

TRANSMIT

L 4
Power Amplifier Output Power (21 W)
Switch Loss
Cable Losses
Transponder Qutput Power

0.15dB
¢.2dB

1'0 dB
0.13 dB

3.7dB
34.0dB

l.2dB
7.0 dB
7.0dB
0.5dB

5.0dB

4.10 dB
4.93 dB

+43.2 dB
0.2d48
0.2dB

+42,8 dBm

*Includes input to preamp losses.

13-62




Table 13-32, L-Band Performance

RECEIVE

Transponder Input Lo Preamp Losses

Diplexer
Preamplifier

Noise
Gain

Preamp to IF Losses

Filter

Downconverter
IF Switch

[} Noise Figure

Overall Receiver Noise Figure*

TRANSMIT

Power Amplifier Output Power {30 W)
L-Band TX/RCV Diplexer Loss
Cable Losses

Transponder Output Power

“1.1dB

4,4 dB
25.0 dB

0.1dB
7.0 dB
0.5dB

5.0 dB
5.57 dB

+46 dBm
0.2 dB
0.2dB

+45.6 dBm

*Includes input to preamp losses.
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Table 13-33, VHF and UHF Performance

VHF RECEIVE (160 M)

Transponder nput Losses

Sum Channel
T&C diplexer
T&C hybrid
Coupler
Error Channel
Modulator

Filter
Coupler

Both ¢hannels filler
Line Switch

1F Switch

Il Noise Figure

Overall Receiver Noise Figure*

Sum Channel
Frror Channel

UNF TRANSMIT (860 Miiz)

Power Amplifier Output Power (80 W)
Filter Loss

Cable Loss

Transponder Output Power

1.0dB
3.0dB
1.0 dB

1.0 dB
0.2dB
7.0 4B

1.0 dB
0.5dB

0.5 dB

5.0dB

12.0 dB
15.2dB

+49 d Bm
0.2dB
0.2dB

+48.6 dBm

*[ncludes input to preamp losses.
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The synthesizer uses direct synthesis from a single frequency standard, A
simplified block diagram of the synthesizer is shown in Figure 13-16, The figure
shows the signal flow for the coherent repeater operation mode at L-Band. When it
is desired to have the synthesizer operate independently of the received frequency, a
highly accurate reference osecillator is substituted in place of the IF signal in the
phase detector and the synthesizer locks to the reference oscillator, Redundancy is

achieved by using two synthesizers,

Solid state power amplifiers are used for all but the C-Band transmitter. The
C-~Band transmitter consists of three traveling-wave tube amplifiers. Command logic
circuitry is used to initiate switching and TWTA selection to effect either a single
power output (10 W) from any one of the three TWTAs, or a combined power output of
20 W from any two of them, The third TWTA performs as a redundant unit capable of
being employed in either of the 10- or 20-W power output modes. The UHF, L-Band,
and S-Band power amplifier are all transistorized, There is no downlink Eommunica—

tions capability available at VHF,

Separate equipment, consisting of an RF Oscillator-Multiplier unit and a 20/30
GHz Modulator-Amplifier unit is also provided onboard the spacecraft for the Milli-
meter Wave Experiment (MWE) described in Section 13,4,4, This equipment can be
used either to generate two CW signals at 20 and 30 GHz, or to synthesize two
coherent multitone spectra each consisting of a carrier and four tones on each side
spaced at 180-MHz intervals and centered at 20 or 30 GHz, In addition, the 6 GHz
uplink signals received by the basic ATS-F multifrequency transponder can be cross-
strapped at IF to the MWE equipment to provide modulated downlink signals at 20 and
30 GHz, A block diagram of the MWE equipment package is shown in Figure 13-17,
In the CW or cross=-strapped modes the output signal powers at 20 and 30 GHz are
limited to 2 watts each; for the coherent multi-tone spectrum the output power is 17,8
dBm per tone, The MWE will employ both horn antennas and the main parabolic
reflector antenna, The beam peak gains for the 20 and 30 GHz horns will be 27,6 dB
and the parabolic antenna gains will be 37, 0 and 39, 0 dB, respectively, for the 20 and
30 GHz signals,
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A separate and independent single frequency convergion transponder is also
being included on-board the ATS-F spacecraft for the COMSAT Propagation Experi-
ment (CPE), Séparate channels are provided at 13,19 - 13, 20 GHz and 17, 79 - 17, 80
GHz with full redundancy in each channel, A signal received in either of these bands
will be translated to 4,15 GHz and amplified in a three-stage tunnel diode amplifier,
The outputs from the two channels will then be filtered, combined in a hybrid network,
and the combined signal delivered to two independent power amplifiers, each consist-
ing of a three-stage tunnel diode amplifier in cascade with a traveling wave tube
amplifier, A block diagram of the CPE transponder, which uses less than 14 watts

of spacecraft power, is shown in Figure 13-18,

The per carrier output of the transponder at 4 GHz will be -36 dBw for the 18
GHz diversity experiment carriers, and -29 dBw for the 18 GHz and -37 dBw for the
13 GHz dual frequency terminal carriers, The on-axis gain of the receiving antenna
will be 28, 6 dB and 25, 8 dB above isotropic at 18 and 13 GHz, respectively, At 18
GHz the antenna beamwidth will be 4° by 8, 5°, The on-axis gain of the transmitting
horn antenna will be 17 dB above isotropic at 4 GHz; the corresponding high-power

heamwidth will be 20°,

13,4, 3 Ground Terminals

Four NASA ATS ground terminals will provide the main support for operations
conducted on the ATS-F and ATS~G spacecraft, All four stations will provide C, S,
and L-Band frequency modulated (FM) transmitters and C, S, and L-Band FM receivers.
Operations for which they will be responsible include spacecraft command and control,
coliection of range and range-rate data for orbit determination, recording polarization
data for spacecraft attitude determination, and performance of technological and
scientific experiments, One station will be located at Rosman, North Carolina, and
two will be located at Mojave, California, One of the latter is a Transportable
Ground Station (TGS), After the launch of ATS-F, the TGS will be moved overseas,

The C-Band portions of each of these terminals, and the L-Band installation at Mojave,
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will be modified versions of tﬁe facilities employed in previous ATS experiments, The
fourth terminal is a mobile station that will allow the experimenters' equipment to be
remotely located, In addition, it‘will serve as a backup to the TGS and will contain
UHF equipment to suppoﬁ the 860 MHz -downlink for the ITV experiment, The three
stations, Rosman, Mojave, and the TGS will have nearly identical communications and
telemetry and command equipment, The major difference is in the antenna gystems,

A separate transportable millimeter wave terminal for the Millimeter Wave Experiment
will be located adjacent to the ATS facilities at Rosman, Major characteristics of these
terminals are summarized in Table 13-34. (37) A block diagram of the communica~
tions facilities at Rosman and in the mobile terminal are shown in Figures 13-19 and

13-20,(37) respectively.

The instructional television experiment will be conducted by the Indian Govern-
ment in cooperation with NASA, Three Indian stations, located at Ahmedabad,
Bombay, and Delhi will originate TV programs for relay through ATS-F, These

signals will be received by small inexpensive terminals scattered throughout India,

All spacecraft maneuvers and experiments will be controlled by direction from
the ATS Operations Control Center (ATSOCC) at Goddard Space Flight Center (GSFC)
at Greenbelt, Maryland, All test data obtained will be forwarded from the ground
stations to GSFC for processing, evaluation, and distribution to experimenters,
Ground complex circuits for effecting this control and distribution of data are illus~

trated in Figure 13-21.(37)

13.4.4 Experiment

The primary objective of ATS-F and G is to demonstrate the feasibility of a
30-foot diameter deployable spacecraft antenna with good RF performance up to
6 GHz.(ag) In addition, the spacecraft is to provide an earth synchronous oriented
platform stabilized along three axes for advanced technology and scientific experi-
ments., In the field of communications, six very important technological experiments

will be performed, These are;
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e Tracking and Data Relay Experiment (T&DRE)

e Position Location and Afrcraft Communications Experiment (PLACE)
¢ Instructional Television (ITV) Experiment

® Millimeter Wave Communications and Propagation Experiment (MWE})

° 13 and 18 GHz Propagation Experiment

e Radio Frequency Interference (RFI) Experiment

Other related experiments include Television Relay Using Small Terminals (TRUST),
Very High Resolution Radiometer, Spacecraft Attitude Precision Pointing and Slewing
Adaptive Control Experiment, Cesium Bombardment Ion Enginer, Laser Retro-

reflector, Educational Television, Radio Beacon, and Environmental Measurements,

13.,4,4.1 Tracking and Data Relay Experiment(sg)

The tracking and data relay experiment (T&DRE) will employ the ATS space-
craft to relay command, tracking, and telemetry data between ground stations and the
low orbiting satellite NIMBUS-E, The systems concept associated with this experi-
ment makes it possible to view the low orbiting spacecraft from an earth-synchronous
satellite for durations nearly six times greater than are presently possible from a
single ground station, Two such synchronous satellites could provide almost continuous
coverage and would eliminate the need for tape recorders to store data on the low-
orbiting spacecraft, The objectives of the experiment are, (1) to determine the extent
to which the orbit of an earth-orbiting satellite can be established from another orbit-
ing spacecraft, and (2) to develop the technology and demonstrate the feasibility of a

data relay system,

To accomplish the first objective, four-way range and range-rate (R&RR) data
will be obtained on the NIMBUS and relayed to the control ground station, The R&RR
system uses a series of tones to modulate an RF carrier, the modulated carrier is

transmitted from the ground station to ATS-F, then down to NIMBUS, up to ATS-F,
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and then back down to the ground station, The phase delay and doppler shift of the
returning signal yields the total four-way range and curnulative range rate over the
signal path from which the orbit of NIMBUS can be determined, The transmission
link between the ATS spacecraft and the ground is at C-Band; between the ATS and
NIMBUS spacecraft S-Band signals are employed,

T&DRE design objectives for uncertainties in raw tracking data are 4, 0 meters
in range and 0, 6 centimeters/s in range rate, Based on the availability of long-arc
tracking data, studies have shown that it should be possible to determine the NIMBUS
orbit to within 50 meters in z total elapsed time of several hours, This constitutes
a substantial improvement over ground-based tracking systems which typically require
days and weeks of data processing to determine orbits which at best are known only
to within hundreds of meters, Verification of these theoretical studies is considered

the major scientific and application goal of the T&DRE,

To accomplish the second objective, that of developing the technology and
demonstrating the feasibility of a data relay system, data from NIMBUS will be
relayed via ATS-F, The data transmission capacity of the NIMBUS to ATS-F link is
determined by the power of the transmitter and antenna gain available on the NIMBUS
spacecraft; this capacity is more than sufficient to provide highly reliable trans-
missions of normal 4 kKbps data from NIMBUS to the ground via ATS-F., To perform
a more meaningful evaluation of T&DRE return link performance, test data will be
transmitted at rates of 50, 100, 200 and 400 kbps. Signal detection at the ATS
ground station will be done using a high-performance carrier tracking phase demodu-
lator which will track the residual ecarrier component of the transmitted signal under

all system doppler conditions,

(39)

13.4,4.2 Position Location & Aireraft Communications Equipment

The Position Location & Aireraft Communications Experiment (PLACE) will
obtain engineering data and provide practical experience to apply in developing an

improved air traffic control system using a satellite operating in the aerconautical
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L-Band., PLACE is designed to promote both improved methods for aircraft position
location and two-way communications between the ground and many aircraft, There

are two primary objectives:

e To prove the feasibility of synchronous satellite relay of multichannel
two-way voice and digital data communications between participating

aircraft and their ground control centers

e To investigate the feasibility and to evaluate the absolute and relative

accuracy of position location techniques using a single satellite,

To accomplish the first objective the ground control facilities transmit, to the
satellite, voice and data signals at C-Band. The ATS-F satellite receiver phase
locks to these incoming signals which are then coherently converted to L-Band at 1500
MHz, These signals are transmitted to the aircraft transponder which phase locks to
the L-Band signal, All stations are thus coherent with each other. Communication
with a specific aircraft is accomplished by modulating that baseband channel assigned
to that aircraft, the aireraft transceiver receives the composite signal but only
demodulates its assigned channel within the baseband, Information from the aircraft
is transmitted in the band from 1650 MHz to 1652 MHz, ATS-F receives this spectrum
and, after preamplification, down-converts it to baseband in the IF amplifier, This
baseband signal is used to phase-modulate a carrier which is transmitted back to the
ground control facilities at C-Band., The ground station receives the carrier and

recovers the aircraft's subcarrier signal,

To accomplish the second objective, unique surveillance and ranging tones will
be used to modulate the carrier from the master control simultaneously with the voice
and data signals. In ATS-F this signal is processed the same as the voice and data
signals, All aircraft will transpond these tones, on a time-shared basis, back to
ATS-F where they are relayed to the ground station for processing in real time to

determine the location of each aircraft,
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The inflight performance experiments will be conducted as a combined effort of
Goddard Space Flight Center and the Federal Aviation Administration, and possibly
other experimenters, The experiments will include actual aircraft flights to deter-
mine the effects of multipath, the ionosphere, noise environment, and geographic

location on both the 1.-Band communication and position location links.

(39)

18, 4,4, 3 Instructional Television Experiment

In the Instructional Television (ITV) Experiment, a television signal is relayed
from the ground through the ATS-F spacecraft to small inexpensive earth terminals,
Its purpose is to advance the state-of-the-art in space communications by combining
the proven technology of satellite relay of wideband FM signals with the new tech-
nology of the ATS-F spacecraft's large aperture parabolic reflector in the geostation-
ary orbit, The experiment will be conducted by the Government of India in cooperation
with NASA, The Indian government will develop, provide, and maintain the ground
receiver segment of the ITV experiment; and develop and use program materials that
will carry out the instructional objectives of the experiment, Three different uplink
stations at Ahmedabad, Bombay, and Delhi will be used during the experimental
period, In isolated villages, standard TV receivers will be augmented with 10-foot
diameter antennas for direct reception of the 860-MHz satellite radiated signal, In
urban areas, the signal will be received with 15-foot diameter antennas and then

rebroadcast from standard television transmitting stations,

The primary objective of the ITV experiment ig to demonstrate the transmission
of CCIR quality televigion signals to small inexpensgive ground UHF receiving terminals,
A secondary objective is to observe the effects of ionospheric dispersion on system
performance as a function of electron density distribution, ground station loeation, and

other system variables and to compare the observations with theoretical predictions,

13.4,4.4 Radio Frequency Interference Experiment(40)

The Radio Frequency Interference Experiment is designed to measure and

evaluate the amount of mutual interference between communication satellite and
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terrestrial microwave relay systems at the shared common carrier frequency bands of
4 and 6 GHz, Although mutual interference can occur in two distinct modes, satellite-
to-terrestrial or down-link mode and terrestrial~to-satellite or uplink mode, only the
up-link interference mode at 6 GHz is presently being considered for the ATS-F
experiment plan, The technical objectives of the up-link interference tests and

measurements are:

To determine the integrated interference power from all 6 GHz
terrestrial sources sharing the common carrier band within the

r-f field of view of the ATS-F satellite

e To establish practical G/T limits for satellites sharing the 6 GHz

common carrier band

e To determine the geographical and frequency distribution of § GHz

terrestrial sources sharing the common carrier band

To establish the protection ratio of wanted-to-unwanted carrier

power (C/X) required at the satellite receiver,

The RFI measurements will be performed using standard noise-power-ratio
(NPR) tests with the earth terminal configured in a back-to~back loop through the
satellite, The reference NPR measurements will be made using the earth coverage
(low gain) antenna of the satellite with the main beam of the high gain (30-foot)
antenna pointed to a quiet spot on the earth, In order to relate the interference levels
to the wanted-to-unwanted signal ratios (C/X), the system carrier-to-noise and base-
pand signal-to-noise ratios will also be measured, The main beam of the high gain
antenna will then be pointed toward a high density population area such as the north-
ecastern coastal region of the United States and the measurement technique repeated,
This set of measurements now contains both the simulated desired signals (and basic
noise) plus the real (unwanted) noise signals from all earth sources within the field of
view of both satellite antennas, These unwanted noise signals, sharing the same

common carrier frequency as the simulated system, can now be determined by
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remeasuring the system NPR, carrier-to-noise, and baseband signal-to-noise ratios.
The measurements will be repeated to determine the interference noise levels as a

function of source latitude, frequency, and time,
13,4, 4,5 Millimeter Wave Communications and Propagation Experiment

The purpose of the Millimeter Wave Communications and Propagation Experi-
ment (MWE) is to provide additional information about the millimeter wave propagation
characteristics of the earth's atmosphere so that this portion of the electromagnetic
spectrum can be utilized effectively for communications and scientific purposes. The
propagation effects of interest in Space-Earth Millimeter Wave links include atmos-
pheric attenuation (absorption and scattering), refraction, dispersion, and noise
considerations., Associated with these effects is the propagation medium bandwidth

limitation, as related to very wideband communications and data transmission systems,
The objectives of the MWE are to:

e Provide propagation characteristics of Space-Earth Links at 20 and

30 GHz under defined meteorological conditions

e Provide engineering data on Space-Earth Communications Links
operating at 20 and 30 GHz under various meteorological conditions

and modulation techniques

° Establish a model for the prediction of millimeter wave propagation

effects.

To achieve these objectives the data obtained from the experiment will be
analyzed using three general areas of investigation identified as Propagation Data
Analysis, Communications Link Analysis, and Channel Correlation Analysis, The
Propagation Data Analysis includes accumulation and cumulative comparison of the
received signal effects versus such meteorological data as rainfall rate, weather
radar return, radiometer temperature, and speed and direction, temperature,

barometric pressure and refractive index, The Communications Link Analysis will

13-80



permit a direct comparison to be made between such measures of link performance as
carrier-to-noise ratio and bit error rate and the link parameters of modulation index,
transmission rate, and carrier frequency, The Channel Correlation Analysis will
study the channel characterization by two-dimensional correlation measurements to
provide a measure of such important channel parameters as coherence bandwidth,

delay spread, fading bandwidth, and coherence‘ time,

To accomplish the objectives of the MWE, probing signals will be transmitted
from the ATS-F satellite at 20 and 30 GHz to a number of earth terminals in three
modes of operation: a multi-tone mode consisting of a coherently-related carrier and
four tones on each side, all spaced at 180-MHz intervals; a carrier wave (CW) only
mode at the frequencies of 20 and 30 GHz; and a communications mode designed to
repeat the ATS-F 6 GHz uplink modulation by means of an IF cross-strap to the basic
ATS-TF communications transponder, As presently planned, the prime communica-
tion and propagation experiment station will be at Rosman, North Carolina, and will
employ a 15-foot diameter parabolic antenna, Other sites located in the Washington,
D, C,, area including COMSAT, the Naval Research Laboratory (NRL), and one fixed
and one transportable site being established for the NASA Radio Interference Propaga-
tion Program (RIPP) will participate and perform diversity testing, It is further
expected that the Ohio State University's (OSU) multi-site capability developed under
the ATS-F program will be utilized by RIPP for acquisition of additional diversity
data. Experimental data will be recorded over a period of 6 months to provide
information on seasonal and diurnal variations in propagation conditions at these

frequencies,
13.4,4,6 The 13 and 18 GHz Propagation Experiment

The 13 and 18 GHz Propagation Experiment is designed to gather data on satel-
lite signal attenuation at these frequencies caused by atmospheric hydrometeors at
ground stations located in representative climatological areas, The data from this

experiment will permit determination of minimum power margins needed in spacecraft

13-581



communications systems operating at frequencies above 10 GHz, The technical objec-

tives of the experiment are:

To obtain the statistical distribution of signal attenuation at 13 and

.
18 GHz for widely varying climatic and geographical earth station
locations

e Toobtain, at 18 GHz, joint distributions of attenuation magnitude
and duration as a function of earth station separation, climatology,
and season

e To determine the feasibility of employing spot beam techniques at

frequencies of 13 GHz or lower to overcome localized fading,

To accomplish these objectives 15 participating earth stations will be established
throughout the eastern half of the U, S, and separated from each other by at least
160 km, Each of these stations will be capable of transmitting, to the ATS-F, two
frequencies near 13,2 and 17, 8 GHz, In addition, diversity operations will be estab-
lished at three of these dual frequency terminals by locating in thé vicinity of each
three single frequency terminals transmitting near 17, 8 GHz, The separation between
the diversity terminals will be less than 40 km, The specific site locations for the
transmitting earth terminals have not been selected as of mid 1971, The ATS~F
transponder will receive these signals from the earth terminals, transiate them to the
4 GHz band, and retransmit them to a single receiving terminal, The receiving
terminal will receive the signals at 4 GHz, separate out the individual carriers,
envelope detect them, and record the power of each carrier on magnetic tape, The
duration of the experiment will be sufficiently long to permit a statistical comparison
between the measured attenuations and the general meteorological parameters that are
routinely collected by the weather bureau, such as rainfall rate, number of thunder-

storm days, and total precipitation,
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13,4,5 Operational Results

Since these are experimental satellites no operational traffic will be carried,
Further, since the ATS-F launch (as of mid-1971) is not anticipated until about 1973
no operational experience has been accumulated on the satellites or on the planned

ground complex,
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SECTION 14 - TACSAT

14.1 PROGRAM DESCRIPTION

The Air Force has the long~range objective to provide combat forces with
satellite communications between mobile tactical terminals.(l) A series of prior
successful satellite developments and experiments in the Lincoln Experimental
Satellite Program (see Section 9) led to a contract in January 1967 for the develop-
ment of a prototype version of an operational satellite, the Tactical Communications
Satellite (TACSAT).

Specific objectives of the Tactical Satellite Communications (TACSATCOM)

program are listed in Table 14-1!2) (3)(4)

Table 14-1, TACSATCOM Objectives

Number . Description

1 Develop, test, and experiment with space and
surface hardware in UHF and SHF bands,

2 Develop, demonstrate, and evaluate operational
concepts for use with many mobile tactical ter-
minalas, These include problems of multiple
access and power control,

3 Provide UHF voice link between the Apollo
spacecraft and recovery aircraft, ships, and
ground stations.

The active repeater satellite was launched into a geostationary orbit (see
Table 14-2) and positioned over the United States where it has undergone a successful
testing program that is continuing. TACSAT also performed very well in support of
Apollo recovery operations. The experiment involved a number of mobile terminals,
specifically developed for this program, that can be divided into UHF and SHF types
and subdivided by platform type. These are listed in Table 14-3!5)(6) In addition,
various other existing terminals were used for the TACSATCOM experiments,
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Table 14-2, Participating Spacecraft

Satellite TACSAT

Manufacturer and Hughes Aircraft and AF Space and
Sponsor Missile Systems Organization
Launch Date 9 February 1969

Launch Vehicle Titan IIIC

Apogee (mi) 22,397
Perigee (mi) 22,31

Orbi%) Inclination | 0.6°
Period Approx, 24 hrs,
Status Spacecraft Active

*At initial injection. Attitude control and stationkeeping
produce changes,

The design of TACSAT represented some major advances in spacecraft tech-
nology. It is a prototype for new high power communication satellites as well as a
test vehicle for tactical communications, Features include use of the gyrostat
stabilization prineiple to allow more flexibility in spacecraft design, complexity
of repeater design, development of a new 20-watt SHF TWT, 'and development of
load-bearing solar panels. The design of families of UHF and SHF earth terminals
based on extensive commonality of equipment represented another advancement,

The feasibility of UHF and SHF communications through a synchronous satellite by
small mobile earth terminals was demonstrated. Use of the tactical transmission
system (TATS) frequency~hopping modem for multiple access and overcoming multi-

path interference was also demonstrated and the attendant problem areas investigated.,
14,2 SYSTEM DESCRIPTION

The UHF and SHF tests were conducted on a half and full duplex basis, The
TACSAT spacecraft is designed to operate in a variety of modes to accommodate the
planned tests with terminals of different capabilities., Functionally, the communi-
cations subsystem consists of a UHF frequency translating repeater and a SHF
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Table 14-3. Participating Terminals

Frequehcy
Type Sponsor Band Antenna
AN/TSC-80 US Army Satellity
Shelter Terminal Comm. Agency SHF 4 -ft diameter parabola
(USASCA)

AN/MSC-~54 '

Vehicular Terminal | USASCA SHF 3-ft diameter parabola

AN/TSC-79

Teampack USASCA SHF 3-ft diameter parabola

AN/TRR-30

Alert Receiver USASCA SHF 1-ft diameter parabola

AN/ASC-14 2, 75-ft diameter

Airborne Terminal | USASCA SHF Cassegrain

AN/ARC-1486 AF Electronics Sys-

Airborne Terminal | tems Dijv. (AFESD) UHF Blade; crossed dipole
Large ship - 4-element
array crossed dipole

AN/WSC-1 (V) Small ship - single

Shipboard Terminal | AFESD UHF element crossed dipole
Submarine - dipole;
Helix

AN/TRC-157

Shelter Terminal AFESD UHF Short backfire

AN/MSC-58

Vehicular Terminal | AFESD UHF Short backfire

AN/TRC~158

Teampack AFESD UHF Short backfire

AN/TRR-32

Alert Receiver AFESD UHF Monopole
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frequency translating repeater, each capable of operating with selectable bandwidths
from 50 kHz to 10 MHz. In addition, there are two crossover modes of operation,

from UHF to SHF and from SHF to UHF.

The modes are under control of commands transmitted by the satellite control
ground station. In keeping with the concept of mobile terminal simplicity, the satel-
lite performs system frequency control by transmitting UHF and SHF beacon signals
that are used as references for all transmit and receive function frequencies generated

at the terminals, and for antenna pointing.

Table 14-4 shows the operating frequency bands at UHF and SHF for communi-
cation and T and C purposes.

Table 14~4, TACSAT Frequencies (MHz)

Purpose Uplink Downlink

SHF Communications 7977.5 to 7987.5 7252,5 to 7262.5

SHF Beacon - 7298.5

UHF Communications 302,5 to 312,5 | 249,3875 to 249,8125
UHF Beacon -- 254,1

T &C No data No data

The UHF frequency band has three modes of operation, although all terminals
do not use all modes. The modes are narrow-band FM voice, TATS, and broadcast

alert, Table 14-5 presents the signal-processing techniques utilized in each mode,

The SHF communication band has a frequency plan that permits great versa-
tility in modes of operation. The frequency plan is shown in Figures 14-1 and 14-2!5)
In Figure 14-1, the composite plan for utilizing the 10-MHz satellite bandwidth is
shown. Figure -14-2 shows the specific carrier frequencies for Bands A and B, which
are the 50-kHz and 1-MHz satellite operating bandwidths, respectively. The center

of these bands is coincident with channel 3 shown in Figure 14-1,
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Table 14 "5 .

Signal Processing for UHF Modes

Mode

Narrow-band
FM Voice

TATS

Broadcast
Alert

Multiple Access

RF Modulation

Ground Demodula-

FDMA - 11 channels
available

FM

Threshold esﬁmated

See Section 9.3

MFSK and fre-
quency hopping

Threshold is 8 dB

Only ohe warn-
ing transmis-
sion at any one
time,

FSK

Threshold esti-

tor Performance at 10-dB C/N based for PE = 1x10-3 mated at 10-dB
upon employing con- C/N based upon
ventional discrimi- employing con-
nators ventional disec,

Ground Terminal* 29,3 dB** 24,1 dB**x* 21,7 dB**

Receive Carrier- 16,7 dB 11,5 dB

to-Noise

Ground Receive 19.3 dB 16,1 dB 11,7 dB

Margin* 6.7 dB 3.5dB

*Higher value is for strongest UHF terminal pair and lower value is for weakest
UHF terminal pair, All results for single access.

**Based on 15-kHz IF bandwidth,
***Based on 50-kHz detection bandwidth for high data rate TATS mode.

The SHF frequency band has four modes of operation, although all terminals
do not use all modes, The modes are frequency modulation for voice or data, TATS,
DPSK, and broadcast alert, Table 14-6 presents the signal-processging techniques

utilized in each mode.
14,3 SPACECRAFT

Characteristics of the communications-related subsystem of TACSAT are
described in Table 14-7, A block diagram of the communications repeater is shown

in Figure 14-3. There are eight ground commandable modes corresponding to the

14-6




2-¥1

Table 14-6,

Signal Processing for SHF Modes

DPSK Broadcast
Mode FM TATS {288 kbps) Alert Warning
Multiple Access FDMA See Section 9.3 FDMA Only one warning
transmission at
any one time
RF Modulation FM MFSK plus fre- | DPSK FSK
quency hopping :
Ground Demodulator | Threshold estimated at | Threshold is 8 dB| Threshold No Data
Performance 6-dB C/N based upon | for PE = 1x10™3 is estima-
employing phase-lock ted at 6-dB
demodulator C/N based

upon employ-

ing phase-

lock demodu-

lator
Ground Terminal* 26,7 dB** 21.5 dB*** 12,1 dBY No Data
Receive Carrier- 11,4 dB 6.2 dB
to-Noise 7
Ground Receive 20,7 dB 13.5 dB 6.1 dB No Data
Margin* 5.4 dB -1.8 dB****
NOTES: *Higher value is for strongest SHF terminal pair and lower value is for weakest

SHF terminal pair., All results for single access.
**Based on 15-kHz IF bandwidth,

*++*Based on 50-kHz detection bandwidth for higher data rate TATS mode.

*++x*TATS modem is not used by teampack (weakest link) at present.
TBased on 432-kHz IF bandwidth. Shelter terminal is only station equipped
with DPSK modem, ‘




Table 14-7.

TACSAT Characteristics

Typu Uiik- Five clemenl SHE= Separate fin loaded horns T & C- Hiconical tlorn
hoelical array for trans4lfor Leanamit and reecive
mit aml receive
Number e e D
Heamwidth Barth coverage (15%90). Larth coverage {199}, Heccive Appraximately 409
" Receive and transmit awd transmit patbtorns not
g patterna not jdentical jidentical and nol symmetrical.
& and not symmelrical.
P!
B uain peak -17.58d8 peak -19, 3di No data
Receive minimum avor Receive  minimum over coverage
COVoringe area arcea =15, 2410
-12.794B
prak =17.12d1 ptak - LR 4dB
Lransmit minimum ovor Peansmit mininum aver coverage
COVUT I arua darea =5, 248
=14, 67dn
Frogquoeney Band un GHF {X-~BAND]
Typu Hard Timiling IF trans- [Hard limiting [F translalion.
laLion. Adjnstable Adjustable bandwidlh and crosag-
bitndwidlh and crossover jover to UHEF ropeater by commaml
i repealer by ocop-
dn nw Hiraight through modes- Strainhl through modes- f0kHa,
50kllz, 100kllz and IMHz and 10MHzicrossover mode
425klvserostsover moedos  |42%kUz
42hkle aml L OMlI»
Numbuer e with some One with some redwnlancy
todundancy
Type Front ¥nd Transistor preoamplifier |[Tunnel diode amplifier into
n inte down conversgion dowth cunversion mixer
E E} mixer
B ™ o
[ -
v g ‘rant End tGain NG dalu No data
[ 1]
& & |system Noise 1,701 6. 9dn
Tigqure
Type 16 parallel transistor (3 UWIs - Any 2 summetd in an
amplificrs with summing joutput WY swiLeh,
oy of any number possible
o
]
b Gain No data No data
L —— f—
ﬁ Power Oub Carricr powey (L6 power [Carrivr power {2 TWTs) —14, odhw
o amplificrs) =23, Gdlw
e Beacen power {16 power  [Beacon puwer (2 1WTs) - C. 2dliW
amplificrs) -8, Odiw
BIRp Carrvier -40, 7diw Carrier -33.0dBw
Heacon =25, 1diw eacon «1B. 6UBW
g Type Gyroslal - consists of spinning eylinder conbaining solar cells and o despun plutfoern
- contuining cammunications cquipment, Dearings and slip ringe uscd belween the 2 secH
= tiohw. Nitrogen spinup system, hydrogen peroxide reaction jets and putation damper
N are uscd.
H
—
E Capabiliey Overall pointing capablility is approximateldy 0.1 degree rms.  llowover, inlermittent
" ﬂ nutation of akout 1 degrec veoours.  las beon invoestiqatoed and conlirmed theoretical ly|
EJ [ aned ean be corrected on future apacecrafl. ,
;‘u’ w oy |Primary Solar array with 380 watlts culput
41 U
M 2y
I g 5 [Bupplemont Battery copacity-over 20 ampere-hours
] ]
b9l
4 s e
G [Comm, Power meods No data
(4]
Size Cylinder 25 fect long and 9 Feot in diamotuoer
Weiglr Aboul 1600 lbs. in orbit
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four filter bandwidths at each frequency band. Two of the modes represent cross-
coupled operation between the UHF and SHF repeaters.

TACSAT is the first U,S. spacecraft stabilized with gyrostat technology.(‘“
This means that the satellite does not have to be‘ spun about its maximum moment of
inertia and thus frees the designer of onboard equipment from the moment of inertia

design constraints,

The spacecraft consists of a large spinning cylinder within which is mounted a
cone-shaped structure, A bearing assembly attached to the cone structure supports,
on its housing, a despun platform containing antennas and communications and telem-
etry equipment. The spinning section contains solar cells, batteries, auxiliary
telemetry, tracking, and command equipment, despin control electronics, the hydrogen
peroxide propulsion system, and the nitrogen spinup system. A pendulum liquid damper

is used for nutation damping,

The intent of the program was to provide experimental hardware for testing
tactical satellite communications and, therefore, to be conservative in the spacecraft
development approach, Space-proven technology was used wherever possible. How-
ever, the satellite requirements could not be met without some major advances in
spacecraft technology. These included: use of the gyrostat stabilizing concept;
intricacy of the repeater design; use of beryllium within the structure; development

of a new 20-watt TWT; and development of load-bearing solar panels,

Biphase digital modulation beacon signals are associated with each of the
repeaters, The modulating signal is a pseudorandom binary bit stream that may be
used at the ground stations for synchronization or timing functions, In addition, the

beacon frequency is used as a reference frequency for all tactical ground terminalas,

The satellite UHF receiver processes the received RF signal, which varies in
level from =150 to -105 dBW, The signal is split into two channels, one for narrow-
band and the other for wideband operation,
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The wideband channel is downconverted to a band around 92,5 MHz, hard-limited
and cross~-coupled to the SHF transmitter. The narrow-band channel is downconverted
to a band around 16.6 MHz, hard-limited and then coupled to the various filters. A
ground commandable mode selection switch routes the desired channel output to the

UHF transmitter,

The SHF received signal level varies frém -150 to -85 dBW, The signal is
downconverted to a band around 92.5 MHz. This signal is split into two paths, one
of which is amplified in the 10-MHz channel and limited, The signal in the other
path is downconverted to a band around 16,6 MHz for the SHF narrow-band channel
modes, A ground commandable mode selection switch routes the desired channel

output to the SHF transmitter,
14.4 EARTH TERMINALS

Two families of tactical terminals were developed for use in the two TACSAT
frequency bands as listed in Table 14-3, Each family employed considerable com=~
monality of equipment with terminal-specific equipment mainly in the categories of
antenna, preamplifier, transmitter, and mumber and types of modems, Figures
14-4 and 14-5 show block diagrams of the UHF and SHF terminals, with all the

possible modes of operation in each frequency band included.

As discussed previously, the satellite beacons at UHF and SHF were used as
frequency references for all ground terminals, In the UHF receivers, the ground
terminal reference oscillator was compared to the beacon and adjusted manually
once 2 week, In the SHF receivers, a phase-lock loop was used to keep the ground
terminal frequency standard locked to the beacon frequency. Major characteristics

of the terminals are shown in Tables 14-8 and 14-9,
14,5 EXPERIMENTS

The experiments performed can be grouped under two general types: technical

and operational. The technical experiments investigated satellite and ground terminal
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Table 14-8,

Characteristics of UHF Earth Terminals

Terminal Feature

Terminal

AN/ARC-146

AN/WEC-L{V)

AN/TRC-157

AN/MEC-48

AN/TRC-156

AK/TRR-12

Type

Blade for low
alevation angles
up te 100;croased-
dipole for higher
clavation anglesa

Large ship antanns
~four element
cronped dipols
array over a
ground plane.small,
ship antenna®
traingle alement
croesed dipole
over a ground
plana

Shert backfiren
balun-fed crosa-
ed aleeve dipoled
with front re-
flector and. rear
ground-plana ra-
flactor

Short backflire)
balun-fed crosaed
aleeve dipoles
with front reflec
ter and vamr
dground-plane re~
flactor

Shart backfire;
ralun-fad crossed
slesva dipcles

tor and rear
greund-plane re-
fisctor

- with front roflecr|

Moncpale

Aperture Size

Blade-contained
ln atyuctural

Large ahip-ground
plane squara 53~

Ground plane- 84
in. by B4 in.

Greund plane
mimilar to

Ground plane
similar to

11 in. long ‘o)

members $=1/6 Ln. | 1/4 in. on a alde; ANSTRC-157 AN/TRC-157
] by 13/16 in. by gmall ship-ground
E 8-5/8 in.} eroas-~ plane circular 38
s ed dipole-centain— in. diameter
s ad in atructural
member 12-35/16
in. by 15=31/12
in, by B-%/1l6 in.
Blade-nopinal 0OdB | Large ahip-12dB 131.54n 11,58 8, 538 minimum 2 de
Roceiva Gain
Croaped-dipole- Small ahip-7dB
6dB at zonhith
Efficiency No data No data Ne data Na data Ho data No data
Recelve Beamwidth| No data No data 40° minimum 407 minimum S5imilar to Mo data
AN/MSC-157, and
~58
Type Preamplifier Tzanui_stcr“] 1‘ranuisteru] Tranalstn:“’ 1'zan515tor[“ 'J'rnun!.nt.or[n Tranu)sto!(“
B
s RF-240 to 260Mllz RF-240 to 2&80MBAz RF-240 te 260MUZ RE=240 to 260MH2 RF-240 to 260 MHZ
w
] pandwidth IF« 250kHz either | IF- 250kHz aither | IF- 250Klz IF- 250kliz clther | IF- Z50kHz either | 4kHz
wide of RF chan- | side of RF chan- | either aide of mide of RF chan- | mide of RF chan-
> nel genter fre- nel centar fra- RF channel cen- nel ceonksr fre- nel contor fre-
3 quency quoncy ter fraguency quency quang
g [10.5dD pte.) {10.5dp pts.| (10,5dB pts.) {+D.5dB pta.) ('0.5d8 pts.)
[
loise Tomperature| §30°K sngex (7 5309k 5309K 6 009K lems than 440°9K
IType Anplifier No data Ho data No data No data Nao data

[Bandwidth

Transmit System

RF-3100 to 3LSMHz

[F~ amplitude ra-
aponae within
*5MHz of band can-|
tar fraguency:

1 to 10 watka -
12.0dB, 10 to 100
watts - :0.5dB,
100 to 1000 watts
- '0.8dB

RF=100 ko I15MHZ

IF- amplitude re-
sponae within
15MH2 of band
center fraguency:
1 toc 10 watts -
+2.06B, 10 to 100
watts - {10.5dDB,
100 to 100Q watts
- 'Q.8dB

RF-300 to 315MH2

IF- amplitude re-
spanse within
15Mliz of band
centar [reguency:
1 to }0 watta -
+2.0dB, 1D to LOO|
watts - 10.5d8,
100 wo 1000 watta
- t0.5dp

RF-300 to 315Mliz

IF- amplitude re-
sponae within
15Mliiz of baad can
ter fraoquency:

1 to 10 wattn -
t2ds, 10 to 0O
waktts - 10, 0DJdB

RF-200 to 315Miz

IF~ amplitude re-
sponac within

- +5MHz of band
canter [requency
iz 11.0dB

No tranamit
capability

mp,. Power Out

Continuously ad-
jusatable 1 watt
to 1000 wakta

Continupusly ad-
juatable from 1
wact to 1000

Continuoualy ad-
juatable Erom 4
watt Eo 1000

Continuously ad-
juatable from 1
watt to 100 wattas

Two output lovels
selectable -2

watts and 20 watts

wattn wikbs
ITypa Nonn”) None=manual posi- | None-manual poei- None-manual pomi- | None-manual poai= | Nene-manual posi—
[ tioning aided by tioning aided by tioning aldad by tioning aided by tioning
5 siynal ntr?n?%h pignal atrength nigral astrenqgth asignal strength
¥ metor (4105706} |meter meter metor
&
Bpccuracy Hot No dats on posi- No data on posi- No daka on posi- o dota on posli- No data on
Applicable tioning accuracy tionlng accuracy tioning accuracy tioning accuracy poaitioning
accuxacy
o /T[” Blada: - 2BdB/oK Large ship: -ll.Bd.B,v’oK -lx.Bdu/oK —IS.BdB/’aK No data
4 =17.5d8/0,
E Croaaed dipole:! Small ehip:
-4 -22dB/ay -22. SdB/oK
= .
E IRP Blade: 30 to 60 | Large ship: 42 ts [ 43,5 to 73.5dmm 43,5 ko 6€3.54Bm 15dBm ahd 25dBm No transmit
—_ dBm T2dBm capability
3 Crossed dipole: Small mhip: 37 to
8 36 to §6dBm 67dBm
Li;runmit Faed Blade - linear Clroular Cirgular Circulay Circular Linear
L} and
[l Croasod dipolo-
g_ wealve Feed clreular
1 JRadoma Yoo Hone None tore None None
~
E-g'rypu Facility Airplane Shipharne Tranapertable Hohl la-joen Tranaportable- Trangportable=
E: mounted by truck or mounted twe or three men Ghe mAan
= ajrcraft
Notes: (1) Estimated from data available.
(2] Nominal value., Ranged up to 2000°K on some shlpa.
{3} Antennas switched depending on elevation angle.
14) After posltioning, anterna la slaved to ship's gyro-pyptem ta follow movement in azimuth plane
(5} ©On some large mhips a dunl antenna systesn, oho forward and one aft of the ship's muperstructure
is used. The antennas are automatieally switched to provide an unobecured patellita view.
(6] Submarine uesd YHF SATCOM antanna system employing a hellx antenna {4 o 53B gain) for high

elevation angles and a dipele antenna (2dB guin) Eor low alevation angles-

Derived value hased on data available,
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Antenna

Table 14-9. Characteristics of SHF Earth Terminals
Terminal Feature Terminal

AN/ASC-14 i AN/T5C-80 ; AN/MSC-57 AN/TSC-79 AN/TRR-30
Type Cassegrain ' parabolic f Parabolic Parabolic Parabolic

. Aperture Size
Receive Gain
Efficiency

Receive Beamwidth

33 inch diameter
33.14B
52%(1)

3.52 ¢ 34dB pts.

48 inch diameter
36.5dB
54%(1)

2.49 @ 34B pts.

36 inch diameter
33.5dB
54%(1}

3.4° @ 34B pts.

36 inch diameter
33.5dB
agg 1)

3.4°% & 3dB pts.

12 inch diameter
23.8dB
46%‘1)

10-3° @ 34B pts.

Type Preamplifier

Uncocoled parametric

Uncooled parametric

Uncooled parametrid

Tunnel diode

Tunnel diode

truck or aircraft

small vehicle and
accessary trailer
for prime power
supply

twc or three men

oche man

—
[}
o amplifier followed amplifier followed amplifier followed amplifier amplifier
P by tunnel diode by tunnel diode by tunnel diode
° amplifier amplifier amplifier
ES
‘W Bandwidth lomMuz 10Muz 10MHz 10MHz 10MHz
[¢]
2 2z 2
£ Noise Temperature (2 _3259% 2310 - 315% (2} .325% {2} _9200% 896 - 9159K
E Type Amplifier No data Klystron Travelling wave Travelling wave
% tube tube
&
- Bandwidth 10MHz 1OMHz 10MHz 10MHz No transmit
A 1 capability
i |
w
5 Amp. Power Dut 1400 watts Adjustable from
g maximum {3) 1.5 watts to BO to 100 watts Selectable 3
& 450 or 500 watts maximum watts ar 10 watts
Type Modified conical Nene-manual posi- None-manual posi- None-manual pesi- No data
- scan plus gyros to ticning aided by tioning aided by tioning aided by
! remove attitude signal strength signal strength signal strength
- changes | meter meter meter
5]
] i |
g Accuracy No data Setting accuracy Setting accuracy Setting accuracy
of better than aof better than E of better than
0.5 +0.50 i xp.59
+
: i
& a/r (2 ¢o papso, 12.9 to 11.5an/08 | Peo aadrog™? 1 Peo 3.9ams0, ) -5.7 to -5.8aB/og 1]
g ; ’
ek |
2E Erre 95. 6dBm (1) maxirum Adjustable from iy |
533 £9.3dRMm t? o4.0 or 83.5 to B4.5d4Bm i Selectable £9.3dBm Ko transmit
4 94.5dnmil maximum © or 74.5dBm(i} capability
=] i
, § Transmit Feed i Circular Circular Circular Circular Circular
M i
| . , . :
= ﬁ Receive Feed | Circular Circular Circular Circular Circular
25
S Radome Yes None None ., None None
-t :
+ |
4 Type Facility airborne Transportable by Transportable by ! Transportable by Transportable by
-
o
+
0
o
-

Notes: (1}

Derived

(2} HNo data
(3) At power amplifier flange.

value based on data available.
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performance characteristics and system performance characteristics with the various
modems employed singly and under multiple-access conditions., The operational ex-
periments evaluated TACSATCOM performance during armed force operational ex-

ercises. In addition, there were various special tests employing TACSAT.

It was originally intended that technical experiments be performed before
operational experiments but late equipment delivery necessitated that the two types
be performed concurrently in some cases, Table 14-10 presents the major technical

experiments together withthe salient results obtained.

The operational experiments, conducted by the Navy, are termed a Fleet
Operational Investigation (FOI) and are intended to investigate tactical concepts,
operating procedures, and techniques. These overlapped, to some degree, technical
experiments but were intended to determine effects of operationally imposed factors.

The following categories of operational experiments were established:
1, Multiple-access capability
2, Operational techniques and procedures
3. Environmental influences on operational characteristics
4. Special purpose coperational applications,

The specific experiments were of three types: teletype, voice, and

simultaneous voice and teletype.

Successful communications were maintained during typical maneuvers such as
helicopter operations from a ship, destroyer maneuvers, aircraft launch and recovery
operations aboard a carrier, and orbit of a C-130 aireraft. The I'M voice mode was
of high quality and very reliable, Secure digitized voice was more cumbersome and
less reliable and intelligible than FM voice. However, it provides a high level of
security, Secure teletype communication was excellent, provided synchronization

was achieved. The probability of achieving synchronization was not as high as
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Teable 14-10, Technicel Experiment Results

Expariment Type

Experiment Configuration

Nature Of Resulta Obtained

1. Limits Oof Satellite Coverage Area

UHF and 5HF shelter terminale in Mary-
land. UHF and SHF teampack terminals
in various Paclfic Island locations.
Used FM volce channel employlng special
data modem

At UHF no degredation above L0 degree
elevation angle. At lowet anglee mignal
deteriprated but data was obtained to

at least 4 deqgrees. At SHF ho rop=
roguntative date is available.

2. Paramators of TACSAT Operating
Modes

Using CW transmission to measure
paramgkbers.

All teat results agreed closely with
theoretically predicted values oY
equipment specificationa.

3. Terminal Antennas

ground, ship, submarine and aireraft
mounted antennas were tested.

Ground, ship and submarine antennasa
performed well. Data was cbtained on
performance of various antenna designg
for fixed wing aircraft and helicopters.

4. teorminal Characteriatica

Standard teats were used to determine
the characteriatics

Bagically the terminals porformed with-
in nominal limita and met mest of the
electrical and mechanical reguirements.
Shipboard UHF terminals had consider-
ably higher noise temperatures {up ta
2000CK) than other UHF terminals {(below
10007K) .

5. FM Voice Modem

single satellite accoss voice link at
UHF and at SIF

Both the UHF and SHF FM voice links
performed satisfactorily and had suf-
ficiont system margin

6. 3Single TATs Mcdem With Ground
Terminals

Single tranamitting modem conflguration
using every UHF, SOF and croes—strap
mode capable of supporting TATs modem.

Under stable conditions modem perfor-
mance via gsatellite is within 1dB (as
determined by EpL/Mavs. error rate) of
back=to-back performance, Interference
appears to be unavoidable in 10MHz band-
width UKF uplink and ia present in 500
kliz UHF band at times, Variations aleng
the radio-wave propagation path alsc
contribute to variations of several 4B,

7. Single TATa Modem With Aircraft
Terminal

Single transmitting modem configquration
using UHF from ground transmitter to
aircraft terminal. A ground receive
Lerminal used to provide a reference
data base.

In general, the tosts demonatrated the
capability of the TATs modem to operate
satigfactorily with a aircraft communigs
tion system including its multipath
environment. About 1dB maximum fade,
with a period of about 3.5 peconds,
ohserved at elevation angle to the
gatellite less than five degrees. When
ueing blade antenna modem lost lock dore-
ing 360-degree turns and with atreraft
heading directly away from sub-satellite
point. Using reference data hase
antenna system gain vs. elevation angle
was calculated far the two onbaard
antemnnas.

Multiple TATs Medem

Up to five tranamitting modems are com-
bined, and transmitted. The test was
performed using the gatellite and in a
back-to-back setup.

Unexpectedly poor performance was noted
during several of the rune using the
gatellite relay. No results are report-—
ed for tests ueing the sateliite. Back-
to-back teste which eliminate on-orbit
pighal fluctuation, intermodulation,

and poasibly interference were perfor-
med. They gave information aon limita-
tions in use of addrcas codes to pre-
vent fnlse acguisition and maintain
adegquate link margin.

9,bPSK Modem (288kbpsa)

6-channel PCM communicatigns using TO-
§60 and the 288-Xbpa modem. SUEF shelt-
or terminal-to-SHF shelter terminal
full duplex.

The 1=MH# satellite bandwidth was used
with carriers spaced 300kliz apart.
This reaulted in spectrum overlap and
test resylts showed that the present
system will not support §-channel PCM.
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desired, due to a slight incompatibility between the TATS modem and the cryptographic
equipment, The teletype mode was considered the most useful because of the large

number of simultaneous accesses and security.

Complete random access to the satellite repeater is complicated by the necessity
to control the uplink power of the users, Joint Service Monitor/Control experiments
were performed to determine tradeoffs involved between a system that is too costly
or unreliable (no control) and a system that operationally is too restrictive in use
(complete control), The experiments were conducted using the TACSAT UHF mode,
The primary control concept allowed complete random access for all 75-bps TTY,
TATS users and for all alert message users subject only to EIRP restrictions, All
other communications modes had to obtain prior approval from the real-time monitor/
control agency before accessing the satellite, A schedule of priority in user com-
munication modes was set up, and each service was allocated a portion of the satellite
EIRP for nonrandom access communication modes. For power control, all UHF ter-
minals were allowed one of two radiated power magnitudes, depending on the receiving
and transmitting antenna gains. Experimental results were obtained that will be useful

in the design of an operational system,

The development of different modulation and multiple-access techniques led to
an investigation of the capability and compatibility of simultaneous use of different
techniques. One experiment involved simultaneous use of TATS and FM/FDM with
the TACSAT 500-kHz bandwidth UHF mode, Only certain TATS codes were used
such that the TATS signal energy did not fall in a selected portion (81,6 kHz wide)
of the repeater bandwidth, This allowed use of FM channels one through seven.
Twelve low data rate TATS at 18 dBW per access, two high data rate TATS at 29 dBW
per access, and three FM accesses at 31 dBW per access were used, Results showed

a C/kT of 59 dB for the FM accesses and a test tone plus noise-to~noise ratio of 26 dB.

Members of the Avionics Laboratory of the ECOM conducted digital data trans-
mission tests with TACSAT, using the TATS modem and the UHF-equipped helicopter.

14-18



The purpose was to determine the effects of the helicopter environment on the capa~-
bility of the TACSAT system to relay digital data that could be extrapolated to simulate

air traffic control data.

The power level was varied in steps and the digital error rates recorded. Air-
craft engines and rotor and aircraft heading all affected the error rate ve. power
level. However, the results showed that with sufficiently high transmitted power

levels no errors cccurred,

A series of tests using the USS Independence and NELC successfully demon-
strated the feasibility of establishing automatic digital data links between remotely
located participants.

The technical feasibility of transferring real-time ASW operational display
data to and from a computer-equipped P-3 aireraft and a ground-based computer
terminal was demonstrated. The experiment was performed at UHF, and the modu-

lation was 2400~bps FSK because the TATS modems were:unavailable.

A 2-way UHF-TDM communication mode used for air traffic control and
carrier landing operated successfully through the TACSAT repeater,

Vocoder voice word intelligibility experiments using the TATS modem were

conducted using TACSAT. The word intelligibility vs. Ni values reached a maximum
o

of 80 percent in some tests and 90 percent using other terminals.

Experiments were performed to determine degree of improved traffic flow in
a star net using automatic control. Functions, such as addressing of members and
assignment of channels, were performed by a computer installed at the net control
station in Bedford, Massachusetts. Automatic Net Control units were installed at
ground-based terminals and Eastern Test Range C-135 afrcraft,

Although the experiments were considered preliminary and additional work
remains, the results showed that automatic polling significantly improved traffic
flow in star nets,
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Experiments with terminals located In Panama were performed to determine the
effect of tropical environment, particularly attentuation due to foliage, on UHF and SHF
communications, The average attenuation at UHF in foliage was about 8 dB. At SHF no
signal acquisition was obtained in the foliage. There were equipment problems directly

related to temperature and humidity.
14.6 OPERATIONAL RESULTS

One of the objectives of the TACSATCOM program was the support of Apollo
missions, TACSAT was used to support Apollo missions 10 through 13 in the

following capacities.

1. Command and control of the Apollo Range Instrumentation Aircraft while

enroute and at their staging bases.

2. Astronaut voice relay from the spacecraft to Mission Control Center in

Houston during orbit, translunar injection burn, and recovery operations.

3, TFollowing the aircraft transporting the lunar samples to Houston,
(7)

4. Recovery ship-to-shore communications

High-power UHF ground-based transceivers were used and the aircraft and
ships were equipped with TACSAT terminals. Communications during all operational

phases were outstanding.

In addition, the TACSAT SHF communication band was used to provide satellite
relay of live television coverage of the moon landing from the continental United
States to Alaska, A modified army SHF terminal in Anchorage, Alaska, was used

* for this purpose,

From launch to June 1970 (latest date data is available), all major satellite
subsystems performed well with two exceptions; a nutation anomaly and a drop in

UHF ERP, It was found that the nutation angle, instead of decaying after separation,
maintained a fairly steady level of about 1 degree. The nutation disappeared even-

tually but has since reappeared at intervals. A study indicated that certain rotor
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destabilizing forces are much larger than anticipated, These can be decreased by
minor changes in the design of future spacecraft. The nutation angle is not large

enough to affect communication system performance,

The UHF ERP dropped after several months from 38.4 dBW to 35.4 dBW +2 dB
with erratic variation about the mean, In addition, the transmitting antenna pattern
changed significantly, Laboratory tests have demonstrated that all the phenomena

observed could be caused by a short circuit to the ground plane or an open circuit on

the first turn of any of the four outer helix antennas.

In addition, there have been three component failures, none of which has
affected system operation; one of the four earth sensors is behaving erratically, one
of the redundant decoders of the TT and C subsystem has produced extraneous out-
puts at times, and one SHF TWT has suffered a reduced power level, probably due
to helix current changes caused by temperature sensitivity.

The UHF terminals developed for the TACSATCOM program were considered
as advanced development models, while the SHF terminals were considered as
feasibility models, Basically, the terminals met most of the electrical and mechan- .
jcal requirements., The UHF equipment was fairly reliable, but the reliability of the
SHF terminals and the TATS modem designed for TACSATCOM use were not as high

as desired,
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SECTION 15 - SKYNET

15.1 PROGRAM DESCRIPTION(D)

In 1962, the first tentative studies were started to determine the feasibility
of a satellite system to meet the United Kingdom's military needs. During 1963 and
1964 subsequent studies proceeded toward a goal of choosing an optimum system,
Meanwhile, the U.S. was planning the deployment of its Interim Defense Satellite
Communication System (IDSCS). The U, S. intended to devote the first year of IDSCS

to testing, and the U, K. was invited to participate in the test phase.

The U. K. program to participate in the IDSCS testing consisted of building
five earth stations and work began on these stations in 1965. Three, with 40-foot dishes,
were designed by Marconi to have an operational capability within the SKYNET program.
The fourth was designed and developed by the Admiralty Suriace Weapons Establish-
ment. This terminal was entirely experimental to test and confirm the basic
design requirements for shipborne terminals. The fifth station -~ a mobile land
terminal - was built by the Signals Research and Development Establishment, This

terminal was also an experimental tool.

The first Marconi station was completed in the middie of 1966, and the other
four stations were all working and participating in testing before the end of that year.
During the testing a large number of R&D tests - typically, measurements of
propagation conditions, path loss, earth station performance, and experiments on
advanced modulation techniques - were accomplished to aid in the design of the

SKYNET System.

In 1966 a Memorandum of Understanding was signed between the U.K. and
the U.S. whereby the U.S, would build and launch two satellites required by the
SKYNET Program., Philco-Ford was to build the satellites and the USAF
Space and Missile System Organization (SAMSO), with technical support from the

Aerospace Corporation, was to act as the procurement agent for the U.K.
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Two satellites were to be launched in 1969-70, with one satellite acting as
a backup for the other to provide a 6-year system capability. SKYNET I "A"
was successfully launched into synchronous orbit in November 1969, SKYNET
I "B" was launched in August 1970 and was a total loss when it failed to reach
synchronous orbit, It was generally believed that thce apogee kick motor used

(1)(2)(3)

to circularize the orbit exploded. Table 15-1 summarizes launch and status

information on the SKYNET satellites.

The U.K. has initiated procurement of additional higher power satellites
from Marconi, U.K., which is working under license to Philco-Ford, U.S.
The U.K. anticipates launching the first of the SKYNET II series in the summer
or fall of 1972. SKYNET II will be similar in design to SKYNET I but will have
considerably higher EIRP (20-watt TWT vs 3. 0-watt TWT).

The operational requirements dictated the use of nine earth stations, five
of which were to be stationary and four mobile, The stationary stations are in the
U.K., Cyprus, Bahrain, Gan and Singapore, Although the stations are considered
stationary, all stations with the exception of the U. K. station have been designed so
that they can be moved if necessary. Two of the mobile stations are fitted in ships -
the assault headquarters ships HMS Fearless and HMS Intrepid. The last two
stations are mobile stations ashore, These two terminals are to be held in strategic
reserve and deployed for contingency operations. Table 15-2 (2)(4 through 9) is a

summary of the terminals participating in the SKYNET Program.

The operational aims are to provide long distance strategic point-to-point

digital cornmunications and to meet selected tactical communication needs with the

mobile terminals.

The central requirement of the system is for multiple access. It was deemed
essential that any stationary terminal be able to communicate with any other, subject
to the limitation of satellite effective radiated power and the amount of terminal
equipment available for the link in question, In a real sense the central requirement

goes beyond multiple access and includes an element of random access.
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Table 15-1., Participating Spacecrait

Satellite Skynet 1A Skynet 1B Skynet 11
Manufacturer . Marconi (UK) under
Philco-Ferd (U. 8.) license to Philco Ford (U.S.)
Sponsors United Kingdom Ministry of Technology,
United Kingdom Ministry of Defense
Launch Date November 21, 1969 August 19, 1970 Estimated Summer/Fall 1972

Launch Vehicle

Augmented Thrust-Thor-Delta

normally, one TWT
has failed

to Apogee kick
motor failure

o .
= Apogee (mi) 21, 559, 5% .
o In procurement
[ Perigee (mi) 22,791, 7* No orbit P
':;g‘ Inclination less than 3° Achieved
% Period (hrs) approximately 24
'e) Position (°E) 39+3
Status Satellite is operating | Spacecraft lost due | In procurement

*Value at initial injection, Subsequent stationkeeping maneuvers have produced changes.
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Table 15-2,

Participating Earth Terminals

Ant, Date

Location Diam, (ft.) Utilization Type | Installed | Mamufacturer Comment

UK (Oakhanger) 40 Static-operational 1 1969 Marconi Lid Main station
traffic
Cyprus 40 " 1966 Mareconi Lid
Singapore 40 " o 1966 Marconi Ltd
Bahrain 21 " 1 1969 GEC-AFI Air Transportable
i Electronics .
Gan 21 I 1969 Ltd
Contingency 21 Contingency v 1569 Helicopter
Contingency 21 " v 1969 Transportable
HMS Fearless 6 Shipborne A% 1970 Plessey Radar
HMS Intrepid 6 " v 1970 Ltd
Christchurch 40 Testing - 1966 | Marconi 1td |
Oakhanger 60 Telemetry, Command | -- 1969 Radiation Inc. | Same design
and Control as USAF sat-

ellite tracking
station




Since this has been an operational system, its contributions to satellite
communications technology have, by intent, been constrained. Nevertheless, it has
been the first satellite communications system to provide an all-digital mode of
operation. This was accomplished by employing spread spectrum multiple access
for users of the 20-MHz channel of SKYNET. In implementing the system, opera-
tional spread spcctrum modems and time-division multiplex cquipment were

devecloped and tested to meet specific SKYNET requirements,
15.2 SYSTEM DESCRIPTION

Based on the two sets of requirements for communications within the SKYNET
System: (1) long distance strategic point-to-point digital communications, and
(2) selected tactical communications with mobiles, it was decided that two
independent satellite bands would be required (20 MHz and 2 MHz). Table
15-3(2)1 (3} gives the frequencics of the two bands,

Table 15-3. Skynet Frequencies

2-MHz Channel 20-MHz Channel
(MH7.) (MHz) Beacon (MHZz)
Uplink 7976. 02 to T978, 02 7985.12 to 8005.,12 | 20 o—————=
Downlink 7257.3 to 7259.3 72G6.4 to 7286.4 7299.5

The satellite, with two independent bands, allowed tailoring of the modulation
and multiple access to satisfy all system rcequirements. Other specified featurcs
of the system include providing reliability of communications under various
conditions of weather, loading and interference, and providing flexibility in terms of

interconnections and traffic carried.

The various requirements of SKYNET communications led to a choice of

terminals of varying capacities, In addition, the satellitc antenna patiern was
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designed broadly enough for coverage from the United Kingdom in the West to
Singapore in the Far East, The U. K.'s other areas of interest fall between these

two extremes,

Traffic requirements were in the form of telegraphy, speech, and medium
specd data circuits, It was decided that the strategic system would be designed
specifically for digital signals at medium specd rates meeting the form of 75 x 2n
bits/second and would use the 20-MHz channel. Once the digital philosophy was adopted,
a telegraph time division multiplex capable of assembling an assortment of syn-
chronous and nonsynchronous telegraph signals of differing data rates into a single

synchronous dataz stream was developed.

For the 20-MHz channel, SSMA was chosen over FDMA. This choice allowed
frequency planning to be eliminated since SSMA transmissions could be superimposed
to any desired degree, subject only to the normal capacity limit of the system.
Additional advantages of this choice werc (1) SSMA signals are virtually immune to
intecrmodulation effects except for the small loss of useful power (approximately, 1 dB)
duc to the radiation of intermodulation, and (2) inherent jamming protection is

provided, Figure 15-1(%19)

indicates the SSMA links established among the fixed
terminals operated in the 20-MHz channel, Table 15-4(2) summarizes the typical

link performance in the 20-MHz band.

In the more difficult mobile terminal case, it was decided to use FDMA with
FM as the basic modulation in the 2-MHz satellite band. In addition, the 2-MHz channel
is used to provide engineering teletype orderwire facilities between fixed stations,
Figure 15-2(%) indicates thc FM links to be established in the 2-MHz band. Link-
power limitations dictate that the mobile and shipborne terminals communicate only
with a 40-foot station. Table 15-5(°)(6){9) gives the FM performance characteristics

of the demodulators used by the mobile and shipborne terminals.

Since reliability of communications is of paramount importance, adequate link
margins were allowed in all cases for unpredictable losses due to weather, mis-

alignments and equipment degradation. - Estimates of 2 dB for excess path
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Table 15-4, Power Budget for Typical SSMA Links

This indicates that 62 digital streams of 2400 bps can
be accommodated,

{1} Received power at satellite (dBm) -72.8
4| 2 Receiver noise level for a 2750 noise temperature
e (dBm/Hz) -165.2
=
(3) Signal/noise ratio at receiver (dB) in 20-MHz
bandwidth 19.4
(1) Received power (dBm) ~99,2
(2) SSMA noise density (dBm/Hz) -169,2
(3) Thermal noise density (250°K) (dBm/Hz) -174.6
(4) Total noise density (dBm/Hz) -168.1
(5) Signal/noise power density (dB/Hz) 68.9
o
5| (6) Required signal/noise power density (dBm/Hz) using
% DPSK modulation with 2400-bps channel for error
A~ rate of 1 in 1000 42,0
(7) Intermodulation loss (dB) 1.0
(8) Margin (dB) 8.0
{3) Residue (dB) 5~ (6+ 7 +8) 17.9
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Table 15-5. FM Demodulator Performance
Threshold of
Maximum Peak Threshold of Phase-Lock
Baseband | Frequency | Equivalent | Carrier | Conventional Loop Used in
Frequency Deviation Carrier BW Discriminator | SKYNET System
o (kHz) (kHz) BW (kHz) | (dB/Hz) c/N0 (dB/Hz) (dB/Hz)
B
4 16 42 52 50,7
4 7.5 23 43.6 53.6 52.1
13 34 45.3 55.3 53.3
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attenuation and 110°K for excess noise are used for earth stations in the U. K, and
Singapore that are served by a suitably disposed geostationary satellite, (11)

| Losses are likely to be somewhat greater in the case of an earth station with a

radome because of the attenuation of a water film on the surface. Reductions in
gignal/noise ratio of up to 6 dB have been obser\}ed with a radome under conditions

of very heavy rain. Margins must be allowed'for both "up" and "down'" links if a

local rain squall is not to upset the power balance of the entire system. Total

margin required was 7 to 8 dB.

Control, as exercised in the SKYNET System, is of three different types:
control of the spacecraft, the earth station complex, and the traffic. Accurate
control of the spacecraft is essential to successful operation of the communication
system, It is necessary to maintain spacecraft position and attitude by on-board control
systems and to switch spare repeater subsystems if malfunctions occur. The
control is exercised at Oakhanger by the Telemetry and Command Station on the

basis of computations performed at Royal Aircraft Establishment Farnborough.

Engineering control of the communication system is exercised from the
Master Engineering Control Centre (MECC) collocated with the Type I earth station
at Oakhanger. The status of each earth station in the system is displayed and instruc-
tions on power levels, frequencies, and operating modes to be used as well as positional
information relating to the spacecraft, are broadcast over engineering orderwire cir-

cuits from this station.

Traffic control takes place at speech and telegraph facility control centers which

are remote from the earth stations and connected to them by telephone lines.
15.3 SKYNET SPACECRAFT

Spacecraft characteristics for the SKYNET satellites are displayed in Table
15-6(2)(3) 7 simplified block diagram depicting the communications configuration

of the satellite is shown in Figure 15-3, 3)
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Table 15-6,

SKYNET I Satellite Characteristics

Size (inches)

Weight (l1s.)

Type X-Band mechanicatly despun UHF array tor TT&C with radundant UHF transpenders and
E command /telemeEry Processing oupment
1%
e
% MNumber One Two
e
E Beamwidth 19" Essentiatly omni-directional
Gain (dB) 18.5 o7
Frequency Band X-Band
Type Hasd-limiting dual chatinol
1 «¢B Banrwidth 20-MH s and 2-MH7 channels
Renuviver
Type Front End Down-conversion mixer into lincar amplifier”
Front Enc Gain No Data
@« .
© Noise Figure 2750"K {10.2 UB)
e
{ -
Wl Transmitrer
w
« Type Redundant TWT
Gain No Data
Power Quiput [11Bm) 31.0
E1RP {(Bm} peak of beam 49.5 {in eaeh channel}
Stabilization
Type Spin 90 rpm B yrars
Capabrility {stationkoeeping} FA" fur B years
%)
g Power Sourcu
-
E Primary Cylinerical arrity of silicon sular cells, cagahte of providing 97 watts of prirme power throughout
ui 5 years of orlit tife
w
:(' Supplemant Twao redundant 16-cell nickel cacdmium batteries for operation during eclipse (68 AH per coll}
@«
w
=z
5 Communicition Power Needs {watist | 64

54 diameter 60 Yigh

Launch 535, on orbit 280

20-MH7 channel
2-MH?z channel

"Dynamic range {a)
{h)

90 tn -45 dBm
100 10 - 45<IBm
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The Communications Subsystem (shown in Figure 15-3) receives, translates in
frequency, amplifies, and retransmits X-band signals. T'wo channels, 20~ and
2-MHz bandwidth (1 dB), are provided. The total output power is divided equally
between the two channels. Figure 15-3 indicates the single thread path. The
compleie cquipment redundancy and cross-strapping which is employed to achieve
reliability is not shown. Selection of either sci of communications equipment,
operating with either traveling wave tube amplifier, is accomplished by ground

command.

The received signal is: (1) isolated by polarization diversity in the orthomodc
transducer, (2) downconverlicd to IF, (3) split into separate channels for amplifi-
cation and hard-limiting, (4) recombined and up-converted to output frequency,

(5) amplified to output power in the TWT, and (6) introduced into the communications
antenna through the orihomode transducer. A signature tone timing signal is
frequency modulated on the beacon carrier and introduced into the communication

band in the channel summer.

The communications antenna consists of the RF assembly and the motor
drive assembly (MDA). RF energy is circularly polarized, collimated into a planc
wavelront and focused upon the flat plate reflector. The beam axis, refiected
through 90° angle, is continuously directed toward the subsatellite point by the
despun motion of the radiating aperture. A rotary choke joint at the lower end of
the MDA housing permits efficient transfer of energy between the spacecraft fixed
and despun waveguide sections. A hydrazine reaction control subsystem provides
for aititude control and stationkeeping and, in addition, would allow the relocation of

the SKYNET satellite to a more optimum location if system requirements change.

Three redundant antenna pointing control systems, earth horizon sensors,
sun angle sensors, and a backup earth to satellite command link, are provided. A

UHT subsystem, also redundant, is provided for telemetry tracking and command

services (TT&C),
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Electrical power is supplied to the satellite from solar arrays. Batteries are
algo provided for eclipse operation, Redundant power control units are used to provide

regulation, battery charging and load control.
15.4 GROUND TERMINALS

The major characteristics of the ground terminals employed in the SKYNET

system are shown in Table 15-7, (4)(5)(6)(9)

15.4.1 Type I & II Earth Terminals

The Type I station at Oakhanger is the master station of the SKYNET system.
Most electrical design features, apart from redundancy, are commonly used with

the Type II stations to simplify training and maintenance support.

The Type I antenna is a 42-foot diameter parabolic reflector with a Cassegrain
fecd system mounted on a fully steerable azimuth elevation mount installed on a

three-legged gantry.

Azimuth rotation is accomplished by two de motors driving in a counter-
torque configuation to minimize backlash. The elevation drive consists of two

mechanically coupled recirculating ball screws,

The Type II antenna mount is fundamentally different. To meet the original
air transportability specification, a double walled inflatable radome was used with
a non-orthogonal mount. This mount allowed the antenna to be more readily
demountable into pieces of a size suitable for the aircraft and also produced a
smaller swept volume than a standard azimuth-elevation mount, thus requiring

a smaller radome.

The profile of the Type | main and subreflectors has been shaped from the
paraboloid to ensure a nearly uniform illumination of the main reflector. By this
technique, overall antenna efficiency and gain were increased, The composite
four~horn feed consists of four horns, four circular polarizers and diplexers,

transmit power dividers and static split combination networks.
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Table 16-7, Characteristics of Skynet Earth Terminals

TERMINAL TYPE t 1] 11 1V v
Type Casseqgrain Cassegrain Cussegratn Cussegrain Cussegrain
{paraboloid reflector) {paraboloid reflector) {shaped surface} {shupied surface) {paraboloid rellector)
< Mount Az, Elev, non orthogonal Az, Elev. Az. Elev. three -axis
E Aperture Size {ft) 42 40 | 21 [
w
'E Ruceive gain {dB} GE* " b6 52 b2 1405
L4 .
Efficiency (%} 54* 60" 73 73 63"
Roceive Beamwidth (9] 023" 0.24* 04 0.4 16"
Type Preaimnpliier Two stage uncooled Twn  stage uncooled Two  stage liquid Two - stage liquid Ambient 1emperature
parzmetre parametric nitrogen cooled nitrogen cooled parametric
parametric parametric
w
> Z | Goin {d8) a0 30 30 30 20
freges
2§ | 148 Bandwidth [MHz} 50 50 &0 60 | 50
o« o
Tuniny Capability {MHz) 500 500 500 500 500
Noise Temperature [°K) 120 20 50 50 220
—
£ E Type Amplifier Klystron Klystran Klystron Kiystran Klystron
]
E E Bandwidth (MHz2 50 &0 50 Na Data No Data
E“ | Amp Power Dutput (W} 20 20 5 5 5
|
é » | Type {monopulse) Automatic Autamatic Automatic Automatic Atulomalic
42
E Accuracy (3n) 0.06 0.06 0.09 0.08 0.15
]
o 2 | Long Term (1 yry 1107 1ot 1o/ 107 No Date
W
& 2 | Short Term (15) 1n10? n10° 1n10° 1n10¥
(%)
4 . | 5v¥s. Noise Temp. oK 250 230 120 120 .30
o W
55 G/T 3z.0" 32.4% 312" 312 15.7"
=% | grmp {dBW} 100" 100* 90" a0 78"
|
-z .
g Q Trunsmit Feed Right Hand Circular Right Hand Circulasr Right Hand Circular | Right Hand Circutar | Right Hand Circular
= 5 . . .
a' ﬁ Receive: Feed Left Hand Circutar Lett Hand Circutar Left Harul Circular Lelt Hand Circular | Lefi Hand Circular
o
(. Radame Yes Yas No No No
3]
,‘f £ | Tyne Facitity Fixed Fixed but movable Fixed but air Mobile Helicopter Shipharne
HZ'J 5 transportable Lransporiable

* Caleulated [rom other measured parameters

*¥ Actual gain is 57 ¢B. 1 dB is lost in cabile runs thal allow maintenance ind repair on paramps while station is stiil
operating, This was done to accomplish high reliability.

' GIT of 28.8 dB when parametric amplilier is run at ambient temperature.
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The Type I and II station receiving systems are similar except that in the
Type I station it is duplicated, with a remotely controlled waveguide changeover
switch in the signal path. A simplified diagram of the essentials of the communi-

(4)

cations chain is shown in Figure 15-4.

The low noise receiver is preceded by a nwaffle-iron type low pass filter

giving 93 dB of protection against the transmitter signal spaced only 500 MHz away.

The duplicated transmitter subsystem is designed to provide accurate control
of power output from 100 W to 20 kW, with control of power sharing between the
fm and SS paths. Channel combining is performed at shf to avoid the risk of fm and
spread spectrum intermodulation that could arise with a common upconverter

stage.

The operational requirements of frequency flexibility and high stability are
met by deriving the local oscillator signals from frequency synthesizers in the
100~ to 150-MHz band locked fo a high stability (1 part in 1010) Master Oscillator at
1 MHz,

The Type I and Type II stations have a duplicated Master Oscillator and one
spare synthesizer (as a compromise between full redundancy and economy) for

the three operational LO sources (receive, 88, and fm transmit).

15.4.2 Type Il and IV Earth Terminals

The SKYNET Type IO and IV earth terminals have 21-foot diameter antennas.
Both types of stations are identical, but the Type IV ia helicopter transportable,
where the Type III is only air transportable by standard aircraft. The simplified
block diagram of the signal paths in the Type III and IV earth terminals are shown
in Figure 15-5. (5)6) A five-horn static split system is used for tracking and all
the microwave equipment is mounted on the back of the antenna disk. The antenna

mount is a simple two-axis elevation/azimuth system.,

The received signals pass through a diplexer and a band-stop filter to reject

transmitted frequencies, and then into a two-stage liquid nitrogen-cooled parametric
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amplifier. Subsequently, they pass toa mixer/IF preamp combination and then to

an IT amplifier where the FDM and spread spectrum gignals are separated.

The combined uplink IF signal is fed into the transmitter unit, There it is
converted to the final frequency, amplified in an intermediate power amplifier,

followed by a higher power, liquid-cooled, five-cavity klystron (VA923E).
Frequency control is the same as in the Type I and II terminals,

15.4.3 Type V Shipborne Terminal

Figure 15-—6(9} illustrates the essentials for the Type V terminal.

Information signals to be transmitted by the terminal are passed through
the baseband equipment to the exciter, which produces a low-power microwave
carrier modulated by the baseband signal, The microwave signal is amplified to

a level of a few kilowatts and fed to the waveguide system and the antenna.

The waveguide system contains the necessary filter and diplexers for separating
received from transmitted signals. It also contains a monopulse comparator for
deriving angular misalignment signals which are fed to the tracking receiver.
Received communications signals are first amplified in a low-noise preamplifier,
After down-conversion to a suitable intermediate frequency and filtering to select
the wanted carriers, they arc then demodulated in the receivers. The latter feed
the baseband equipment with outputs to the user equipment (telephone, tclegraph,

ete.).

Stabilization of the antenna beam is by reference to the gyro assembly, which
provides an inertial reference pointing angle, Any misalignment of the beam with
respect to this reference is sensed by the gyro pickoffs, and corrcctions are applied
by power servo and drive motors, The inertial reference point angle is updated
by signals derived from the tracking receiver so that the beam always points at the
satcllite. Manual pointing data for initially acquiring the satcllite may also be

fed to the gyro assembly.
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TFor a terminal located on a ship, due to pitching and rolling motions, a two-
axis mount is inadequate for tracking the satellite through regions requiring high

mount velocities and accelerations, Therefore, a three-axis mount was employed.
15.5 EXPERIMENTS DESCRIPTION

Since this i8 an operational system, few experiments have been conducted,
The repeater performance, which is crucial to the performance of the entire system,
has been measured in orbit by means of the special earth station test faeility at
SRDE (Christchurch, U.K.). To date no significant change from the performance

measured by Philco-Ford in the laboratory before launch has been observed,
15.6 OPERATIONAL RESULTS

The SKYNET system was designed in a conservative manner and the satellite
and ground terminals developed met their specifications. As a result, the operational
performance has bheen within the limits that were anticipated. The only spacecraft
malfunction of significance was the failure of 1 TWT after a year of in-orbit

operation,
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SECTION 16 - NATO SATELLITE SYSTEM

16,1 PROGRAM DESCRIPTION

In 1963/65 the first tentative studies were started to determine the feagibility of
a satellite system to satisfy NATO communication needs, After the signing of the
Memorandum of Understanding between the U.K, and the United States in 1966 for the
SKYNET satellites, the United States proposed that NATO utilize the satellite tech-
nology developed for SKYNET in order to have a viable synchronous satelliie communi-
cation system built and deployed by 1971, In 1967, a Memorandum of Understanding
was signed between the United States and NATO, whereby the U, S, would build and
launch two SKYNET-type satellites, Philco Ford was to build the satellites, The
USAF Space and Missile System Organization (SAMSO}), with technical support from the

Aerospace Corporation, was to act as the procurement agent for NATO,

Further system engineering studies indicated that two rather minor changes in
the SKYNET-type satellite would provide a more optimum system for NATO, The
first modification was to change the equal power division between the 20-MHz and
9-MHz channels to a 6-to-1 ratio, respectively. The second change was to shift the
antenna aiming point from the subsatellite point on the earth to between 40° and 45° N
latitude, since all NATO earth terminals were to be located north of the Equator,

This yielded a more optimum power spread for NATO coverage over the Northern

Hemisphere,

In addition, NATO decided to participate in the IDCSP test program, This early
part of the project was called NATO SATCOM Phase I, NATO initially leased and
finally purchased two 15-foot diameter "MASCOT" satellite ground terminals built by
Phileo Ford. These terminals were used in test operations with IDCSP satellites to
train personnel for the coming of the advanced system (NATO SATCOM Phase II).

The second Phase of the program included launching the two modified SKYNET-
type satellites and building a satellite ground system. Phase III of the NATO program
{s post-1875 and is presently in the early planning stages,
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For NATO SATCOM Phase II, the two satellites were to be launched in 1269/1970,
with one satellite acting as a backup to provide a 5-year system capability. NATO I
was successfully launched into synchronous orbit in March 1970, The launch of NATO
I was delayed until 1971 due to the apogee motor failure that occurred during the
launch of SKYNET I "B." NATO II was successfully launched into synchronous orbit
in February 1971, Table 16-1(1) @)

the NATO satellites.

summarizes launch and status information on

The operational requirements dictated the utilization of 12 stationary earth
terminals, The 12 stations are located near the capital cities of the 12 following
countries: Belgium (L1), Germany (L2), United States (L3), UK (I4), Norway (L5),
Turkey (L86), Italy (L7), Canada (M2), Netherlands (M3), Denmark (M4), Greece (M5},
and Portugal (M6), Although the stations are stationary, they can be disassembled

(1)

and relocated to a prepared site, Table 162" " is a summary of the participating

earth terminals of the NATO SATCOM Phase II systems,

Originally, two types of ground stations were planned, one employing an antenna
42 feet in diameter, which was designated a large (L#) capacity terminal and one with
a 21~foot antenna designated a Medium (M#) capacity terminal, However, system
engineering studies Indicated that if the satellite power was divided in a more optimum
way (6-to-1 power split versus equal power split), it would be more realistic to use
only one type of ground terminal, The change to all identical ground terminals (42 feet
in diameter) provided much more flexibility and reduced the total logistic problem,

The definitions of large and medium capacity terminals remained,

The operational objective of the NATO SATCOM Phase II has been to provide
highly available voice and telegraph communication circuits between the NATO
countries and the military and political headquarters, The central requirement of the
system is for multiple access, It was deemed essential that the number of circuits

should be fixed and the quality of the circuits should be constantly monitored and

controlled,
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Table 16-1, Participating Spacecraft

Satellite NATO 1 NATO II
Manufacturer Philco Ford (USA)
Sponsors North Atlantic Treaty Organization (NATO),
Brussels, Belgium
Supreme Headquarters, Allied Powers Europe (SHAPE),
Casteau, Belgium
Launch Date 3/20/70 2/3/71
Launch Vehicle Augmented-Thrust-Thrust Delta
Apogee {mi) 22,619 23,024
Perigee {mi) 21,420 21,432
8 | Inclination Less than 3° Less than 3°
a)
'§ Period (hrs) Approximately 24 Approximately 24
5
S | Position (W) 18 +3 *+ 26 +3 **
Status Satellite is operating Satellite is operating
normally, cne TWT, has normally.

* At initial orbital injection. Attitude control and station-keeping maneuvers change
orhital parameters.

+* Positions were chosen so that at the extremities (i.e., 15"W and 29°W) the minimum
elevation angle from any NATO ground terminal would be greater than 10°,
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Table 16-2, Participating Earth Terminals
Ant, Date
Location Description | Dia, Utilization Installed Manufacturer
Belgium** L1 Operational
and primary
system control
Germany** L2 Operational traffic
and backup system
control
United States 1.3 Standard Electric
Lorenz*{Germany)
U.X. L4 Prime contractor:
Norway L5 led a consortium
of companies
Turkey L6 421 1970/  |from the NATO
Italy L7 Operational traffic 1971 Countries to build
Canada M2 ground terminals,
modulation, multi-
Netherlands M3 plex, control, and
interconnect
K in
Denmar e facilities.
Greece M5
Portugal M6
e —
Hague, 1968/ SHAPE Technical
Netherlands 30" | Testing 1969 Center

*SEL is a subsidiary of International Telephone and Telegraph Corp.
**Main station interconnect by LOS microwave.
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The NATO SATCOM Phase II was built entirely from existing technology in order
to minimize system risk, This approach to design has produced a successful operational
system, Its consequence is that no major contributions toward advancing the state-of-

the-art in satellite communications have been made,

16,2 SYSTEM DESCRIPTION

System studies based on the requirements for communications within the NATO
System indicated that the optimum choice for multiple access would be FDMA, since
ho random access was r;equired. It was further determined that the seven large
capacity terminals would operate in the 20-MHz band, each transmitting a single
multidestination 24-voice channel FM access, and that the five medium capacity
terminals would operate in the narrow-hband (2-MHz) channel, each transmitting a
gingle multidestination, 3~channel FM access, All stations, both large and medium
capacity, receive and demodulate a number of carriers dependent on the individual
station connectivity requirement, Table 16-3 gives the frequencies of the two satellite

(1)

channels, Figure 16-1""" indicates the connectivity of the NATO SATCOM Phase 11

gystem,

Since the satellite transponder is hard-limiting, frequency planning to control
intermodulation and accurate power control are required, The frequency planning

was accomplished via computer analysis and verified by measurements on a simulator,

The three most important overall criteria that were used in designing the system

were:

1, Performance
2, Availability
3. Proven techniques

The single most dominant requirement was to provide a system that would mini-
mize the probability that a given communication circuit might become unavailable,

This was achieved by a combination of realistic performance estimates for equipment,
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Table 16-3, NATO SATCOM Phase I Frequencies

2-MHz Channel (MHz) 20-MHz Channel (MHz) Beacon (MHz)
Uplink 7976. 02 to 7978.02 7985. 12 to 8005, 12 -
Downlink 7257.3 to 7259.3 7266, 4 to 7286.4 7299,.5
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inherently reliable units, redundancy, and rapid fault diagnosis and repair, In
addition, performance margin was provided to protect the system against environ-

mental extremes,

In view of the need to achieve a highly reliable system, great emphasis was
placed on the importance of using techniques and equipment that had already been
proven, Traffic requirements are in the form of telegraphy, speech, and low-speed

digital circuits that can be carried on a voice channel,

A second stage of the NATO SATCOM program is being considered, In Stage 2,
a limited number of stations may be equipped with spread spectrum equipment, Pro-
vision for the introduction of spread spectrum modulation equipment in the satellite

ground terminals was incorporated in the original design of the stations,

Table 16—4(1) gives the FM performance characteristics of the demodulators
used in the system, The number of modes that are provided allow the system to

change capacity and configuration as long-term requirements vary,

Table 16—5{1) gives a typical downlink power budget for the NATO System for
conditions that should exist 99 percent of the time at the worst geographic station,
Margins at all other stations are 0,1 to 2, 7 dB higher than those shown in the table,
Since reliability of communications is of paramount importance, margins were
allowed for unpredictable losses due to weather, power control, misalignments and

equipment degradation,

As for the SKYNET system, control of the NATO SATCOM Phase II system is
provided in a number of different forms, viz, of the spacecraft, the earth terminal
complex, and the traffic, Spacecraft control is exercised by the USAF Satellite
Control Facility, Sunnyvale, Calfiornia, through its worldwide network of satellite

monitoring facilities,

Control of the distribution of satellite output power is exercised from the Pri-
mary Control Center (PCC) collocated with the Belgium earth station or from the

Secondary Control Center (SCC) collocated with the German earth station, The method
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Table 16-4, FM Demodulator Performance

Mode Number of Voice Channels Carrier-to-Noise Carrier-to-Noeise Density Nominal IF
Transmitted Density Ratio at Ratio for -30 dBmOp Bandwidth
Threshold (dBHz) Weighted Noise in Worst (kHz)
Channel (dBHz)
1 24 64,3 68 575
2 18 63,2 67 475
3 12 60,8 65 325
4 6 58,3 62 150
5 3 56,1 60 100
6 2 54.6 59 50
7 1 49,7 55 15




Table 16-5, Power Budgets for Typical NATO FM Performance
at the Worst Geographic Position
Parameter 20-MHz Band* 2-MHz Band*

{1) Received power at satellite (dBm) -71.4 igg -71.4 igg

ﬁ (2) Satellite receive noise (dBm)/Hz -165,2 -165.2
S‘ power density (2750°K) o5 0. 1259 +0.5
(3) Carrier/noise ratio (dB) T -1.3 T -1.3

(1) Satellite ERP (minimum) (dBm) +50,3 +42,8

(2) Intermodulation loss (dB) -1.2 -1.3
(3) Power sharing (dB) -8.5 1,0 -7.0x1,0
{4) Carrier uplink uncertainty (dB) 0 t(l)g 0 tgg
(5) Power control (dB) 0 1.0 0 +1.0
(6) Net ERP/carrier (dBm) +40,6 iig 33.3 iig

. +0 . +0

g (7) Downlink losses (dB}) 203.0 1.3 203.0 1.3
R | (8) Receive antenna gain (dB) +58.0 tg? 58.0 igi
1, 1.5
(9) Receive input carrier power (dBm) -104.4 J:2 g 111.7 iz 3

(10) Receive thermal noise power -175.2 -175.2

density (220°K) (dBm/Hz)
(11) Intermodulation Noise Density -178,2 -174,6
(dBm/Hz)

(12) Total Noise Density (dBm/Hz) -173.4 -171.9

(13} Receive carrier to noise (dBm/Hz) 69.0 tég 60.2 i;g
(14) Minimum margin to threshold (dB) 2.4%* 1,8%x

*99 percent of the time values will be within these limits,

**All other stations should have margins that are from 0.1 to 2.7 dB better.

16-10



of power control utilized is manual, Manual control is dependent upon the judgment
of the controller to react properly to a given set of circumstances within a highly
ordered set of procedures, The controller provides the intangible asset of making
critical decisions under highly unexpected circumstances, Methods were chosen and

equipment provided to allow the controller a wide .Iatitude of choice,

Equipment has been provided for the continuous monitoring and measuring of
system performance, The information from each system terminal is forwarded
continuously to the system controller by means of an automatic data reporting network,
Both system control stations, at Belgium and Germany, receive and process the same
information independently, The two control stations are interconnected via a land
data link so that the system can be controlled from either, using the equipment pro-
vided at the other station, In effect, there is a total redundancy in the control system,
Each control center is provided with computation and display equipment for the analysis
and display of the incoming data, A TTY orderwire network via the satellite has
been provided to allow the controller to forward specific control instructions to any

station,

Traffic control takes place at speech and telegraph facility control centers that

are remote from the earth stations,

16,3 NATO SPACECRAFT

Spacecraft characteristics for the NATO satellites are displayed in Table 16—6{1).

The simplified block diagram depicting the communications configuration of the
satellite is the same as shown in Figure 15-3 for the SKYNET satellite, The space-
craft functioning and subsystems are identical to those described in Paragraph 15, 3
for SKYNET.

16,4 NATO SATELLITE GROUND TERMINALS

The NATO SATCOM Phase IT System utllizes 12 identical ground terminals, The
ground terminals at Belgium (L1) and Germany (L2) are the master stations of the
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Table 16-6, NATO Satellite Characteristics

Size {inches)

Weight {Ibs.)

Type X-Band mechanically despun with lens UHF array far TT&C with redundant UHF
to aim center of bearn at 429 —45° N transponders and command/telemetry
" processing equipment
<
g Number One - Two
Ll
E |Beamwidth No Data Available Essentially omnidirectional
<
Gain (dB) 175 -0.7
Frequency Band X-Band
Type Hard-Limiting dual channel
1 dB Bandwidth 20 MHz and 2 MHz channels
g Receiver
ﬂ Type Front End Down conversion mixer into linear amplitier®
x Front End Gain No Data
E Noise Figure 27509K (10.2 dB}
Transmitter
Type Redundant TWT
Gain o Data
Power Output (dBm) 33.0 {20 MHz} 24.5 (2 MHz channel)
EIRP {dBm) peak of beam 50.5 (20 MHz channel) 42.0 {2 MHz channel)
Stabilization
Tvype spin 90 rpm — 5 years
Capability (stationkeeping) 13% tor b years '
& | Pawer Source .
o
E Primary Cylindrical array of silicon solar cells, capable of providing 87 watts of prime power,
5 throughout 5 years of orbit life
': Supplement Two redundant 16 cell nickel cadmium batteries for aperation during eclipse (8 AH
s per cell}
o
;{ Communication power needs {watts} 64
w
&)

54 diameter 60 high

Launch 535. In urbit 280

*Dynamicrange (a}) 20 MHz channel

90 to —45 d8m

(b} 2 MHz channel — 100 to —45 dBm

16-12




network. Table 16-7'1

summarizes the performance of the NATO ground terminals,
The antenna is a 42-foot diameter Cassegrain with a reflector shaped to provide high

efficiency. It is mounted on a fully steerable azimuth/elevation mount,

The basic IF interface is 70 MHz (both transmit and receive), A simplified
diagram of the essentials of the communications chain is shown in Figure-lﬁ-z(l) .

The entire transmit and receive chain components are redundant.

The parametric amplifier, which is designed to have a low noise figure, uses a
varactor diode that is operated at its parallel resonance frequency, The output signal
from the parametric amplifier is then fed to the microwave receiver, Down-conversion

to 70 MHz is accomplished by standard heterodyning techniques,

The transmitter subsystem is designed to provide accurate power control
(+0, 5 dB} from 100 W to 5 kW. In addition, a summing amplifier is provided (330 MHz)
to potentially combine up to eight separate uplink signals, Signal power is first
increased by the use of an intermediate power amplifier, which is a TWT, The TWT
output directly feeds the high power kylstron, which is a Varian Type VA-925F cooled
by distilled water. The most important features of the transmit chain are frequency
stability and setability, Stringent frequency and power control are required to main-
tain satellite output power balance,

The operational requirements of frequency ﬂe;cibility and high stability are met
by a derived local oscillator supplied from frequency synthesizers locked to a high
stability (1 part in 1011) master oscillator,

16,5 EXPERIMENTS DESCRIPTICON

The repeater performance, which is crucial to the performance of the system,
has been measured in orbit by means of the special earth station test facilities at
SRDE (Christchurch U.K.) and the SHAPE Technical Center (STC), the Hague. To
date no significant change from the performance measured by Phileo Ford in the

laberatory prior to launch has been observed,
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Table 16~7,

Characteristics of NATO Earth Terminals

Type Cassegrain Shaped Surlace
Mount AZ-ELEV
<
Z |Aperture Siza {f1) 42
w
5 Receive gain (dB) a8
=
Efficiency {%) 75
Receive Beamwidth (9 0.23'
= Tyur Preamplifier Varactor diode
w
I7 |Gain (dB) No Duta
>
a1 | 1B Bandwidtis tMHz) | 50
>
E Tuning Capability {MHrs) | 500
fen}
& INoise Temperature (°K) | 90 - 100
= = Type Amplitier KL¥STRON
20
@ I [Bandwidth {MH7) 680
a3
| Amp Power Quiput kW) | & 6
L}
s Type {monopulse) Automatic
=]
g Accuracy {3u) 0.026" "
=
=
o] 2 long term (1 yr) 1in 109
ek
w o |short tarm (1 sec.) 1in 101
|5}
_ |3¥s Noise Temp. ®k 210 '
e
=] () a8
=]
[= o
EIRP (dBW} 04
=
=]
=
3
z Trunsmit Faad right hanct circular
<
§ Recaivo Feed {ed1 hand circular
z
o
= L)
5 Radome Yas'*"
)
| Tyue Facility Fixed**""
]
=

*Calculated trom uther measured parameters

**This can degrade to 0.05 per channel if manaal track is remuired

" Al excepl L2 Germany

****Can be relocated to prepared site
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16,6 OPERATIONAL RESULTS

As of May 1971, measurement of the operational performance of the NATO
Phase II system has not been accomplished, The only spacecraft malfunction of
significance has been the failure of one TWT after 6 to 8 months of orbit operation,
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SECTION 17 - PHASE Il DEFENSE SATELLITE COMMUNICATIONS SYSTEM

17.1 PROGRAM DESCRIPTION

In June 1968 the Department of Defense announced its decision to acquire six
satellites and additional earth terminals as the sécond phase of the Defense Satellite
Communications System (DSCS). The first phése (the IDCSP) had successfully com~
pleted its research and development objectives and since late 1967 had been providing

2 restricted operational capability.

The objective of the second phase, or Phase II, of the DSCS is to establish an
operational military satellite communications system which will provide substantial
increases in performance together with a wider variety of services for users. When
completely operational the Phase II DSCS will be a part of the Defense Communications
System (DCS) and will function as both a long haul strategic trunking system and a
gystem capable of supporting military contingency operations. In addition, the sys-

tem will be capable of supporting service to small tactical users, if needed.

Two of the six satellites procured under this program are, as of mid-1971.
scheduled to be launched aboard a Titan IIIC booster into synchronous orbit in late
1971, and should become operational in early 1972. Definite dates for the follow-on
launches have not been scheduled, but will be made on an as-required basis for
replenishment and to establish additional in-orbit operational satellites, Table 17-1

summarizes launch and status information on the Phase II DSCS satellites.

The earth terminals presently being used with the IDCSP (see Section 12, 1) will
be modified and upgraded for operational use with the Phase II DSCS, In addition, a
limited quantity of new terminals will be procured and deployed to fulfill the opera-~
tional requirements, A summary of the present IDCSP terminals is presented in
Table 12-3. Table 17-2 presents a summary of the new terminals which will partici-

pate in the Phase II DSCS.
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Table 17-1. Phase 11 DSCS

Satellite

Manufacturer &
Sponsor

Launch Date

Launch Vehicle

Apogee (Mi.)
Perigee (Mi.)
Inclingtion
Period (Min.)

Orbital
Data

Phase 11 DSCS
TRW /U.S. Air Force

- Dual satellite launch - Dec, '71"
- No decision on additional launch dates

Titan IIIC

In procurement {planned for synchronous
orbit) as of mid-1971

Status In procurement as of mid-1971
Table 17-2. New Phase II DSCS
. Antenna Date

Type | Diameter Utilization Sponsor - Available

HT 60 ft High density traffic USASCA* Mid-'73

MT 20 ft Low density traffice USASCA* Mid-'73

LT 8 ft Contingency & special Not awarded Not awarded
user support as of mid-'71 | as of mid-'71

*United States Army Satellite Communications Agency
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The military satellite communication system that has been designed will satisfy
the varied and changing user requirements over the next 5 years. The system will
evolve from an analog system (almost total) into a digital system (almost total) during
this period., Additionally, the initial groundwork will be laid for moving into a time
divigion multiple access (TDMA) system. The satellites developed will provide
steerable narrow coverage antennas which will greatly enhance the flexibility and oper-
ational capability of the system, Ground assets developed primarily for the Phase II
DSCS will include militarized pulse-code modulation (PCM) and time division multiplex
(TDM) equipments, error correcting coders/decoders, high data rate phase shift keyed
(PSK) modems, and new highly-reliable ground terminals,

17.2 SYSTEM DESCRIPTION

The first Phase II satellites are scheduled to be launched in late 1971 and the
system will be implemented in three distinct pericds, each providing different communi-
cations capabilities., In the first period (denoted as Stage 1la), Phase II will operate in
the frequency division multiple access (FDMA) and code division multiple access
(CDMA) mode and will provide a point-to-point operational capability by mid-1972 after
completing essentlal on-orbit satellite tests. Inthe second period (denoted as Stage
1b), Phase II will operate in the FDMA mode to provide a multipoint network satellite
communications capability and the CDMA mode to provide point-to~-point protected
(l,e., jam-resistant) communications for vital traffic. During the final period, the
Phase II system will employ time division multiple aécess (TDMA) and CDMA to pro-
vide a total network capability. The latter state will be denoted as Stage 2.

In Stage la, the point-to-point terminal linking arrangement results in an oper-
ational system similar to that of IDCSP, However, in this case, many links will be
handled simultanecusly by each satellite. During this initial stage of the Phase II
DSCS only the upgraded IDCSP terminals will be included in the system. The traffic
will range from one analog voice channel between AN/TSC-54 terminals to 12 analog
voice channels between AN/MSC—46 terminals, A few selected links will provide a
wideband digital traffic capability to support such requirements as wideband digital
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data and digitized voice signals. These digital links will be time-shared with FM voice
circuits. The baseband and modulation equipment (i.e., FM modems, multiplex,

digital modems, etc.) will be those which are presently in use in the IDCSP.

A protected traffic capability (i.e., circuits resistant to RF jamming) will be
provided during Stage la on a terminal-to-terminal basis using existing CDMA (spread
spectrum) equipment, These links will be dedicated lines between selected users and
will pass designated vital traffic only. Communications control of the system during
Stage 1a will consist of scheduling with system coordination and discipline maintained

by a controller, One controller will be established for each satellite.

Initially, it is intended to launch two satellites. Three to four satellites may be
needed to supply a complete global capability providing connectivity among the geo-
graphical locations dictated by military requirements. However, a decision on placing

more than two satellites in orbit has been deferred to a later date,

A limited number of AN/TSC-54 terminals will be equipped to provide a con-
tingency capability in Stage 1a, These terminals will be self-contained in that they
will be provided with FM modems, multiplex, and ancillary equipment to handle 12
voice channels., The FM modems will be capable of modulating an RF carrier with up
to 72 voice channels delivered to the terminal in a baseband form from a separate
technical control facility. Operation of contingency terminals during this stage will be

via the satellite narrow beam antennas, )

Stage 1b will utilize multiple receive and transmit carriers at selected locations
{nodes) to support links in a multipoint network operating via a single satellite. Traffic
will range from 12 voice channels on the AN/MSC-46 pairs to three voice channels
between the AN/MSC-46 and AN/TSC-54 terminals. Initially, a few links will be used
to provide wideband digital traffic between selected areas in support of imagery data
and digitized voice requirements as in Stage 1a. As the time division multiplex
(TDM) and pulse code modulation (PCM) equipments become available, the system will
phase from an almost all~analog system into a hybrid (part analog, part digital) and
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finally into an all-digital system. Access to the satellite in Stage 1b will be FDMA.
During this stage the new MT and HT terminals will become available and will be
integrated into the system, Control of the DSCS in Stage 1b will continue to be on a
schedule and discipline basis as described for Stage la.

AN/TSC-54 terminals will be available for contingency operation as described
for Stage 1a. In Stage 1b a larger number of AN/TSC-54 terminals will have been
modified for contingency operation through the satellite narrow beam. They will be
provided with URC gpread spe'ctrum equipment to achieve electronic survivability
(l.e., an anti-jam capability). Note that operation with the satellite narrow coverage
antennas, in itself, provides jammer rejection when the beam can be placed 8o as not

to include the jammer,

In Stage 2, the system will operate using time division multiple access (TDMA).
All links will be established on a time base (rather than frequency) allowing each
terminal to function as a multiple link, or nodal, terminal. A full complement of
modified IDCSP and newly-procured terminals will be available for use during this
stage.

Protected traffic will continue to be provided using spread spectrum equipment,
However, the modems employed will be of an advanced model spacifically designed to

meet the Stage 2 system requirements,
17.3 SPACECRAFT

The spacecraft characteristics for the Phase II DSCS satellites are displayed in
Table 17-3. A block disgram depicting the communications transponder is shown in
Figure 17-1.

The communication subsystem consists of a multiple channel repeater with the
channels ecrosslinked, receive and transmit EC antennas, and two NC antennas each
capable of receiving and tranamitting simultaneously. Each NC antenna will be capa-

ble of being independently steered.
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Table 17-3.

Phase II Satellite Characteristics

X -BAND MECHANICALLY

X -BAND MECHANICALLY

5-BAND BICONICAL HORN
FOR TT&C

Communication Power Needs
Size {feet}

Weight {Ih)

235 watts
dismeter — 9; height 13

1100

TYPE DESPUN HORN DESPUI\_J PARABOLIC REFLECTOR
Nurmiber 1 1 1
2
Z | Bearmwidth Pencil Beam - 18" Pencil Beam - nominal 2.5" Toroidal 32" wide
'_I-l_-l {Earth Coverage|
= , .
< Gain (dB) Xmit, — 16.8 (Edge) Xmit, -- 33 (Edqe) 3 {Peak)
Canfiguration EC-EC” EC-NC™ NC~NC* NC-EC*®
Type Single conversion with each of 4 channels operating in a linear, quasi—linear, or hard—limiting mode as
selectet by ground commands
Bandwidth {1 dB) 125 MH~7 50 MH~ 185 MH» 50 MHz
Number One One One One
Recaoivar
5
E Type Front End Tunnel Diode commean to EC~EC & EC—NC Tunnel Diade common to NC--NC & NC~EC channals.
« channels
ui
& Front End Gain No Data No Data
'S
System Noise Figure 8.3dB 12.8 d8
Transmitter
Type TWT common to EC—EC & TWT common ta EC—NC &
& EC—NC channuls NC—NC channals
This channel shares a transmittes
Gain No Data No Data with EC—EC channel
Powar Qut 20 Watts 20 Watis
EIAP 28 40 (Each of 2 antennas)
43 (1 antenna)*™
Stabilization
Tvpe Spin stabilized — nominal 50 APM with hydrazine thrusters tor stationkeeping and attitude corrections
wn Capabitity Pointing accuracy of despun plattorm 10,147, That of NC antenna 10.2". East—Waest stationkeeping 10 within t3"
g of designated subsatellite point for 6 yoars
2
: Power Source
g
3 Primary Right cylindrical array of solar cells, capable of providing 520 watts at taunch and 357 watts after 5 years
o
uzJ Supplemant Three nickel cadmium batterios
]
Q

‘Denotes uplink and downlink antennas that channel interconnects.

" *With 2 NC antennas ermployed TWT output power is split. With 1 antenna full power goes to that antenna.
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The uplink frequency transmitted by a DSCS earth terminal determines which of
the four signal channels will be used. This assumes that an carth terminal planning to
use either the NC-NC or NC-EC channels is within the geographical area covered by
one of the NC antenna patterns. Satellite receive frequencies are in the 7900-8400
frequency band. These input frequencies are translated in frequency, amplified, and
retransmitted in the 7250 to 7750 MHz band. A simplified frequency plan is presented
in Figure 17-2 which relates the various channel modes together with their related
frequency translations and satellite antennas. Both the EC-EC and NC-EC channels
share the output power of a 20-watt TWT amplifier using the earth coverage antenna.
Likewise, the NC-NC and EC-NC channels are combined and transmitted via a second
20-watt TWT amplifier using either one or both of the narrow coverage antemnas. The
bandwidths of each channel are presented in Figure 17-2 and represent 410 MHz of
usable bandwidth.

All active components within the communications subsystem are redundant.
Selection of any active component, together with the narrow coverage antenna switching,
is accomplished by ground command, In order to achieve maximum in-orbit usage of
the Phase II satellite, all onboard systems have been sized to provide a minimum 5-
year operational lifetime. Each channel within the satellite can be commanded to

operate in either a linear, a quasi-linear or a hard-limiting mode.

All transmitting antennas will be left-hand, circularly polarized, while the
receiving antennas will be right-hand, circularly polarized. The two narrow coverage
antennas will be capable of being independently stecred through +10° in each of two
orthogonal directions, whereas the earth coverage antennas (transmit and receive

horns) will provide coverage to approximately 1/3 of the earth's surface.

The launch profile of the launch vehicle will be chosen so that, with use of the
satellite's orhital control subsystem and telemetry and command subsystem, the
longitude of each satellite's subsatellite point can be accurately selected, In the same
manner, the satellite's orbital control subsystem and the telemetry and command

subsystem will be capable of repositioning the satellite once during the operational
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Figure 17-2, Phase II DSCS Frequency Plan
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life to any other equatorial point at a rate of at least 15° per day. Over the operational
life of the satellite, the East-West excursions of the satellite will be maintained to
within +3° of the designated subsatellite point, The inclination of the satellite orbital

plane with respect to the equatorial plane will not exceed +3° over the operational life,

Electrical power is supplied to the satellite from solar arrays. In addition,

batteries are provided for eclipse operation.
17,4 GROUND TERMINALS

The two major classes of ground terminals to be employed in the Phase II DSCS
include modified Phase I, IDCSP, terminals and new terminals presently under
development. The major characteristics of the IDCSP ground terminals are presented
in the description of Phase I DSCS ground terminals (see Table 17-4), Modifications
being made to these terminals, their background, and major characteristics of the

new terminals are as follows:

17.4,1 Modified IDCSP Terminals

17.4.1.1 AN/FSC-9 Terminals

The AN/FSC-9 is a large fixed terminal employing a 60-ft, antenna. There are
two of these terminals, one at Fort Dix, New Jersey, and one at Camp Roberts, Cali-
fornia, The AN/FSC-9 terminals were originally designed and procured under the
Advent Program. Initially they operated with the SYNCOM satellites, but they were
later modified for operation in the military satellite communications band and used
with the IDCSP Phase I satellites. These two terminals were rehabilitated and upgraded,
during 1970-71, by STRATCOM under contract to the Philco-Ford Corporation. These
modifications ensure compatibility with the Phase II, Stage 1a DSCS. Further modi-
fications to at least one of the AN/FSC-9 terminals are planned in order to provide
a multiple transmit and receive carrier capability, a 500-MHz receive bandwidth and
a 100-MHz transmit bandwidth. These modifications will allow the terminal to function

as a Stage 1b DSCS nodal terminal.
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Table 17-4. Characteristics of New DSCS Ground Terminals

ANTENNA

TERMINAL TERMINALS
FEATURES HT MT
Type Nominally Parabolic 4 Cassegrain dish array

Aperture Size
Receive Gain
Efficiency

Receive Beamwidth

60 ft. Dia.
60 dB*
Ng Data

0.16° @ 3dB pts.”

20 ft. Dia. (effective)
50 dp”
No Data

0.5° @ 3dB pts.”

W Type Preamplifier Cryagenically cooled Uncooled
=
b=
T | Bandwidth 500 MHz 500 MHz
own
é 5 Noise Temperature Mo Data No Data
Type Amplifier 2 — LPA (Low Power Amplifier) 1 — LPA
- 1 — HPA (High Power Amplifier) 1 — HPA
==
§E Bandwidth LPA — 500 MHz LPA — 500 MHz
4? HPA — 170 MHz HPA — 170 MH2
o
" | Amp. Power Out LPA — 3kW LPA — 3kW
HPA — 8kW HPA — BkW
[
=
Lx’ Type Automatic Automatic
<
E Accuracy No Data No Data
[1¥]
Q
=
- o
« = | G/T (dB/7K) 39 27
o
29
e | EIRP (dBm) 127 17
&
rd
o
t2 | Transmit Feed RHCP RHCP
N
g Recetve Feed LHCP LHCP
o
D
z
[®]
£ | Radome None None
g
&' Type Facility Fixed Transportable
5
z

*Derived values for typical antennas of the size indicated
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17.4.1.2 AN/MSC-46 Terminals

The AN/MSC-46 is a relocatable terminal consisting of three vans and a trans-
portable 40-ft. antenna and pedestal. The entire terminal including the antenna and
pedestal is air transportable. The existing 14 AN/MSC—46 terminals were designed,
developed, and placed in operation during the 1963-67 period. The total weight of the
AN/MSC-46, in a transport configuration including the diesel generators, is approxi-
mately 125,000 pounds., The AN/MSC-46 terminal was designed to be capable of being
assembled in 18 hours by a crew of 8 men, In practice, the time required for instal-
lation and checkout prior to achieving operational readiness has been considerably

longer than 18 hours,

Present planning calls for crystal oscillator modifications to all 14 AN/MSC-46
terminals prior to Siage 1b. Up to seven of these terminals will be provided with a
multiple transmit and receive carrier capability, a 500- MHz receive bandwidth and a
100-MHz transmit bandwidth in order to allow them to function as Stage 1b DSCS nodal

terminals,
17.4,1,3 AN/TSC-54 Terminals

The AN/TSC-54 was designed as a highly transportable terminal which could be
transported in a single military aircraft of the C-130 type. The total weight of the
existing AN/TSC-54 terminal type, including spare parts, a single prime power unit,
and fuel sufficlent for 72 hours of operation, is approximately 25, 000 pounds, The 13
AN/TSC-54 terminals were designed, developed, and placed in operation during the
19656-68 period,

The AN/TSC-54 terminals will be modified and equipped to fulfill two missions
during Stage 1, They will be equipped to handle up to 12 voice channels for DSCS
trunking, using the earth coverage satellite repeater channel. Additionally, with the
necessary modifications, they will be used as contingency terminals utilizing the
satellite narrow beam channel. These contingency terminals will include 12 channels

of self-contained multiplex equipment but will be able to handle a baseband consisting

of up to 72 voice channels,
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The modifications and equipment additions to the AN/TSC-54s will more than
double the weight and volume of these terminals, The latest weight estimates for the
AN/TSC-54 contingency terminal complex in a transport configuration is 68,000 pounds.

17.4,2 New Terminal Developments

17.4.2,1 HT/MT Terminals

A contract was awarded in June 1970 for the design, development, and testing of
one prototype HT and MT terminal, respectively. Final acceptance testing of the two
prototype terminals should be completed by mid-1972. Major characteristics of each
terminal are given in Table 17-4, The emphasis in the HT/MT designs was in the

following areas:

e High availability obtained by the use of extensive redundancy and sophisti-

cated fault location and automatic switchover circuitry

e  Multiple transmit and receive carrier capability including a high level of
immunity to the intermodulation products resulting from multiple carrier

operation

e Wide bandwidths, linear phase and amplitude characteristics, flexible fre-
quency control, and dual IF interface frequencies of 700 MHz and 70 MHz
in order to ensure compatibility with the variety of modems anticipated

during the 15-year design life of the HT/MT terminals.

The HT and MT terminals are nearly identical except for the antenna subsystems.
The HT will use a 60-ft, antenna which can be erected and subsequently removed from -
a permanent foundation, The MT terminal design employs the previously developed
AN/TSC-54 18-ft, cloverleaf type antenna. It is anticipated that in any production
versions of the MT that might be procured, the 18-ft. cloverleaf antenna will be re-
placed by a parabolic dish antenna approximately 35 ft. in diameter in order to increase

the communications capacity of this terminal.
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The total weights of the development models of the HT and MT terminals are
estimated at 400,000 and 100,000 pounds respectively, including the maintenance and
service vans and the prime power units. The weight of the production version of the

MT would, of course, increase should it incorporate the larger antenna design.
17,4.2.2 LT Terminals

The Light Transportable (LT) terminal is presently in the definition stage; a
contract award is not anticipated before 1973. Further information is unavailable at

this time,
17.5 EXPERIMENTS

The Phase I DSCS will be an operational system; no experiments are presently
planned. A wide range of tests are scheduled for both checkout and evaluation of

performance,
17.6 OPERATIONAL RESULTS

Satellites have not been launched as of mid-1971,
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SECTION 18 - TELESAT

18.1 INTRODUCTION

Telesat Canada was established on September 1, 1969 by an Act of the Canadian
Parliament to provide domestic communications service in Canada by satellite.
It is a corporate instrument to own and operate on a commercially profitable basis
the domestic satellite communications system of Canada as a mixed government,
commercial common carrier, and public business venture, Before the establishment
of Telesat Canada, some advanced technical planning had been carried out by the
Prime Minister's Task Force on Satellites, a project group set up by the Canadian
government and headed by Dr. J.H. Chapman. The group concluded that a
geostationary satellite system would be the most economical way to satisfy Canada's
composite needs for Arctic communication service, remote television service, and
additidnd]l heavy route television and message traffic service along the U. S./

e
Canadian border.

Design work was initiated in 1969 on a satellite capable of being launched by
the thrust~augmented Thor-Delta series of NASA launch vehicles. The aspacecraft
was to provide six RF channels, each capable of transmitting one color TV signal
or the equivalent in message traffic, Early in 1970, however, Telesat received a
proposal from the Hughes Aircraft Company for a spacecraft design also capable
of being launched by thrust-augmented Thor-Delta series, but which provides
exactly twice the communications capacity of the previous design. Telesat is
now proceeding on the basis of this new design and expects the aatellite to be launched
in the 1ast quarter of 1972, The initial system will use two satellites in orbit, the
second acting as an in-orbit spare, A third satellité will be available for launching
either to replace a failed satellite or to accommodate system growth, The second

satellite will be launched about 4 months after the first launch,

The major contribution of this system to satellite communications technology

is that it will be the first operational domestic satellite system, and as such is the
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forerunner of future domestic systems. Additionally, it will develop and demonstrate
earth terminals suitable for unattended operation under climatic conditions, including

those existing in Arctic regions.
18.2 SPACECRAFT DESCRIPTION

The Canadian domestic satellite, officially named "Anik" (the Eskimo word
for brother), is an all microwave, fixed gain, 12-channel transponder where each
channel is essentially an independent amplifier with a bandwidth of 36 MHz. The
transponder configuration is shown schematically in Figure 18-1. If receives
signals sent from ground stations in the 5925-to 6425-MHz band and down-converts
these to 3700 MHz to 4000 MHz for retransmission to other stations. The only
active equipment common to all communications channels is a wideband receiver
which establishes the system noise temperature, translates the 6-GHz carriers to
4 GHz, and amplifies the 4-GHz carriers to an intermediate power level before
channelization. Separation of the FDM-FDMA channels is accomplished by two
multiplexers for the even and odd number channels, each of which consists of a
bank of six circulator-coupled waveguide filters, A 37 percent efficiency TWT
amplifier with a saturated output power of 5 watts is provided in each channel for
final power amplification. After power amplification, the channels are summed by
two low loss multiplexers, again odd and even, each of which consists of a bank of
six waveguide filters. The receiver and driver portions of the repeater are redundant,
with a switch at the input selecting the chain for processing inputs. Two spare
channels are available since the satellite is sized for 10-channel operation at the

end of the 7-year mission life.

The mechanically despun communications antenna consists of a 5-foot diameter
parabolic reflector and its associated feeds. Antenna despin control is exercised
either by ground command or by an on-board pilot signal processor tracking on a
ground generated pilot signal. The lightweight reflector is fabricated from a honey-
comb sandwich and the reflecting surface is covered with a metal mesh. The latter

makes the antenna transparent, thereby reducing what otherwise would be the
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significant disturbance of the satellite by solar pressure. The feed assembly consists
of a two-horn feed on one polarization for the transmit function, and a three-horn
feed plus a planar subreflector for the receive and track functions. The horizontal
arrangement of the horns assures that the antenna pattern, roughly 3° x 8°, is

wider in that direction than in the perpendicular one, The beam pattern is pointed
toward Canada, about 7, ¢° off the equator, The omnidirectional toreidal beam
telemetry and command antennas used during the transfer orbit phase of satellite

injection on station are mounted on top the parabolic reflector antenna,

Economies in system design have been realized through several steps taken
to lessen the satellite's weight and hence its cost in orbit. These steps include
satellite attitude determination on the ground rather than by on-board spacecraft
hardware, extensive use of thin-walled invar filter waveguides, and affixing the
squared solar cells to panels attached to the outer cylindrical body of the spacecraft

with rubber cement rather than epoxy.

The design provides for 10-channel operation during sun eclipse periods when
the system must be powered by an on-board battery system. During normal sun-
light operation only 10 channels would be in operation, with the remaining two
channels used for standby operation, The spacecraft is designed for a useful

lifetime of about 7 years. Spacecraft characteristics are summarized in Table 18-1.

18,3 EARTH TERMINALS FOR TELESAT

In the Introduection three distinct service requirements were noted for the
Telesat system: arctic communication service, remote television, and heavy route
communications along the U.S./Canadian border. The equipment complements
required to realize circuits of acceptable quality and reliability for each of these
services differ considerably, so several earth station configurations have been
proposed. The present plans call for two heavy route stations capable of passing
all forms of tranamission to and from the satellite. The master station, which will

also contain the telemetry, tracking and command installation, is planned for Allan

18-4



Table 18-1, Telesat Characteristics

Antenna

Type

Number
Beamwidth
Gain

Dual Mode with shaped beam, Parabolic
reflector of 5 foot diameter, plus bicone
for telemetry and a cloverleaf for command
during the launch and transfer orbit phase.
One

3° x 8° {o give coverage of Canada

27 dB over coverage area*

Frequency Band

C band: 5925 - 6425 MHz (RCV)
3700 - 4200 MHz (XMT)

Weight

Type Non-linear single conversion
B.W. (3dB) 36 MHz per channel
Number 12 RF channels including 2 on standby
e | Type Front End Tunnel Diode Amplifier
E E Front End Gain No Data
‘é /s | Sys. Noise Fig, Approximately 9 dB*
e e | Type TWT
E Gain No Data
» | Power Out 5W
EIRP 33 to 34 dBW within coverage area per
channel
G/T -7dB/°K
é ‘ Type Spin with hydrazine jet stationkeeping and
= attitude control.
< ¥ | Capability Stationkeeping to within +0, 1° of 0° orhit
%A inclination and proper longitude.
o, o Primary 20, 448 solar cell array providing 300 watts
g g @ power at launch and 230 watts at end of 7
E 8 é years,
o _| Supplement Two 28 volt nickel -cadmijum batteries
E Comm. Power Needs 220 watts
2| size Total Height = 11. 4 ft. ; eylinder 75 inch
o diameter

200 1bs. in transfer orbit, 630 Ibs. after
firing of apogee motor

*Value derived from other data available,
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Park, about 70 miles northwest of Toronto, The other heavy route station is
planned for Lake Cowichan, 40 miles north of Victoria, British Columbia. They
will use 97-foot antennas with uncooled parametric amplifiers to give a minimum

G/T of 37 dB/°K.

Five regional network-quality television (NTV) earth stations will be established
near Edmonton (Alberta), Regina (Saskatchewan), Winnipeg (Manitoba), Halifax
(Nova Scotia) and St. Johns (Newfoundland). These network television stations will
be used to receive CBC programs for further distribution by conventional terrestrial
means, Approximately 25 remote television (RTV) stations are planned for isolated
communities in the northern parts of Canada not served at present by terrestrial
microwave facilities, These receive-only stations will be located as close as
practicable to the TV rebroadcasting stations they serve, The minimum G/T for
the NTV and RTV earth stations will be 28 and 26 dB/°K, respectively. Both
the NTV and RTV stations will be capable of unattended operation.

The proposed earth station complement also calls for two northern tele-
communications (NTC) earth stations for arctic service, The primary purpose of
the NTC stations is to establish two-way communications between the northern
localities and the Allan Park main station as well as to receive TV programs for
rebroadcasting to the local communities, The stations will be designed for unmanned
operation and will be suitable for operation in severe arctic conditions. The first
two stations of this type will be located at Frobisher Bay and Resolute Bay in the

Canadian Arctic,

At the time of the writing little technical data regarding the proposed earth
station configurations of the Telesat have been published. All the available data has

been included in the text above,

18.4 EXPERIMENTS

Since the objective of the Telesat program is to establish an operational

domestic communications system, few experiments are planned. Testing will, for
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the most part, consist of satellite in-orbit checkouts and initial evaluations of

system performance,
18,5 OPERATIONAL RESULTS

As of mid-1971, the satellites have not been launched. When the system is
established, each channel of a satellite will be capable of accommodating a color
television program or as many as 960 multiplexed voice channels frequency
modulated onto a single carrier. When multiple carriers are employed in an FDMA
mode of operation, the voice channel capacities of a single satellite channel will be

diminished,
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